The foundations of mathematics
Material type:![Text](/opac-tmpl/lib/famfamfam/BK.png)
- 9780198706434
- 511.3 23 STE-F
- QA9 .S755 2015
Item type | Current library | Collection | Call number | Status | Date due | Barcode | Item holds |
---|---|---|---|---|---|---|---|
![]() |
IIITD Reference | Mathematics | REF 511.3 STE-F (Browse shelf(Opens below)) | Available | 007226 |
Browsing IIITD shelves, Shelving location: Reference, Collection: Mathematics Close shelf browser (Hides shelf browser)
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
REF 511.3 RUC-I Infinity and the mind : the science and philosophy of the infinite | REF 511.3 SCH-L Logic for computer scientists | REF 511.3 SOA-R Recursively enumerable sets and degrees : | REF 511.3 STE-F The foundations of mathematics | REF 511.3 VEL-H How to prove it : a structured approach | REF 511.322 FRI-S Sets and computations | REF 511.322 JEC-S Set theory |
Includes bibliographical references (pages 383-385) and index.
Part I. The intuitive background -- 1. Mathematical thinking -- 2. Number systems -- Part II. The beginnings of formalisation -- 3. Sets -- 4. Relations -- 5. Functions -- 6. Mathematical logic -- 7. Mathematical proof -- Part III. The development of axiomatic systems -- 8. Natural numbers and proof by induction -- 9. Real numbers -- 10. Real numbers as a complete ordered field -- 11. Complex numbers and beyond -- Part IV. Using axiomatic systems -- 12. Axiomatic systems, structure theorems, and flexible thinking -- 13. Permutations and groups -- 14. Cardinal numbers -- 15. Infinitesimals -- Part V. Strengthening the foundations -- 16. Axioms for set theory.
There are no comments on this title.