The foundations of mathematics
By: Stewart, Ian.
Contributor(s): Tall, David.
Material type:
Item type | Current location | Collection | Call number | Status | Date due | Barcode | Item holds |
---|---|---|---|---|---|---|---|
![]() |
IIITD Reference | Mathematics | REF 511.3 STE-F (Browse shelf) | Available | 007226 |
Includes bibliographical references (pages 383-385) and index.
Part I. The intuitive background -- 1. Mathematical thinking -- 2. Number systems -- Part II. The beginnings of formalisation -- 3. Sets -- 4. Relations -- 5. Functions -- 6. Mathematical logic -- 7. Mathematical proof -- Part III. The development of axiomatic systems -- 8. Natural numbers and proof by induction -- 9. Real numbers -- 10. Real numbers as a complete ordered field -- 11. Complex numbers and beyond -- Part IV. Using axiomatic systems -- 12. Axiomatic systems, structure theorems, and flexible thinking -- 13. Permutations and groups -- 14. Cardinal numbers -- 15. Infinitesimals -- Part V. Strengthening the foundations -- 16. Axioms for set theory.
There are no comments for this item.