000 | 01912cam a2200397 i 4500 | ||
---|---|---|---|
001 | 18198153 | ||
003 | IIITD | ||
005 | 20240515020003.0 | ||
008 | 140623t20152015flua b 001 0 eng | ||
010 | _a 2014024218 | ||
020 | _a9781466595002 | ||
035 | _a(DNLM)101635331 | ||
040 |
_aDNLM/DLC _cDLC _erda _dDLC |
||
042 | _apcc | ||
050 | 0 | 0 |
_aQP623 _b.K67 2015 |
060 | 1 | 0 | _aQU 58.7 |
082 | 0 | 0 |
_a572.88 _223 _bKOR-R |
100 | 1 | _aKorpelainen, Eija | |
245 | 1 | 0 |
_aRNA-seq data analysis : _ba practical approach _cEija Korpelainen, Jarno Tuimala, Panu Somervuo, Mikael Huss, Garry Wong. |
260 |
_aLondon : _bCRC Press, _c©2015. |
||
300 |
_axxiv, 298 p. : _bill. ; _c24 cm. |
||
490 | 0 | _aChapman & Hall/CRC Mathematical and computational biology series | |
500 | _a"A Chapman & Hall book." | ||
504 | _aIncludes bibliographical references and index. | ||
520 | _a"RNA-seq offers unprecedented information about transcriptome, but harnessing this information with bioinformatics tools is typically a bottleneck. This self-contained guide enables researchers to examine differential expression at gene, exon, and transcript level and to discover novel genes, transcripts, and whole transcriptomes. Each chapter starts with theoretical background, followed by descriptions of relevant analysis tools. The book also provides examples using command line tools and the R statistical environment. For non-programming scientists, the same examples are covered using open source software with a graphical user interface"-- | ||
650 | 1 | 2 |
_aSequence Analysis, RNA _xmethods. |
650 | 1 | 2 | _aTranscriptome. |
650 | 2 | 2 | _aStatistics as Topic. |
700 | 1 | _aTuimala, Jarno | |
700 | 1 | _aSomervuo, Panu | |
700 | 1 | _aHuss, Mikael | |
700 | 1 | _aWong, Garry | |
906 |
_a7 _bcbc _corignew _d1 _eecip _f20 _gy-gencatlg |
||
942 |
_2ddc _cBK _08 |
||
999 |
_c24806 _d24806 |