000 01912cam a2200397 i 4500
001 18198153
003 IIITD
005 20240515020003.0
008 140623t20152015flua b 001 0 eng
010 _a 2014024218
020 _a9781466595002
035 _a(DNLM)101635331
040 _aDNLM/DLC
_cDLC
_erda
_dDLC
042 _apcc
050 0 0 _aQP623
_b.K67 2015
060 1 0 _aQU 58.7
082 0 0 _a572.88
_223
_bKOR-R
100 1 _aKorpelainen, Eija
245 1 0 _aRNA-seq data analysis :
_ba practical approach
_cEija Korpelainen, Jarno Tuimala, Panu Somervuo, Mikael Huss, Garry Wong.
260 _aLondon :
_bCRC Press,
_c©2015.
300 _axxiv, 298 p. :
_bill. ;
_c24 cm.
490 0 _aChapman & Hall/CRC Mathematical and computational biology series
500 _a"A Chapman & Hall book."
504 _aIncludes bibliographical references and index.
520 _a"RNA-seq offers unprecedented information about transcriptome, but harnessing this information with bioinformatics tools is typically a bottleneck. This self-contained guide enables researchers to examine differential expression at gene, exon, and transcript level and to discover novel genes, transcripts, and whole transcriptomes. Each chapter starts with theoretical background, followed by descriptions of relevant analysis tools. The book also provides examples using command line tools and the R statistical environment. For non-programming scientists, the same examples are covered using open source software with a graphical user interface"--
650 1 2 _aSequence Analysis, RNA
_xmethods.
650 1 2 _aTranscriptome.
650 2 2 _aStatistics as Topic.
700 1 _aTuimala, Jarno
700 1 _aSomervuo, Panu
700 1 _aHuss, Mikael
700 1 _aWong, Garry
906 _a7
_bcbc
_corignew
_d1
_eecip
_f20
_gy-gencatlg
942 _2ddc
_cBK
_08
999 _c24806
_d24806