000 06808nam a22005655i 4500
001 978-3-540-45164-8
003 DE-He213
005 20240423132432.0
007 cr nn 008mamaa
008 121227s2000 gw | s |||| 0|eng d
020 _a9783540451648
_9978-3-540-45164-8
024 7 _a10.1007/3-540-45164-1
_2doi
050 4 _aQA76.9.D3
072 7 _aUN
_2bicssc
072 7 _aCOM021000
_2bisacsh
072 7 _aUN
_2thema
082 0 4 _a005.74
_223
245 1 0 _aMachine Learning: ECML 2000
_h[electronic resource] :
_b11th European Conference on Machine Learning Barcelona, Catalonia, Spain May, 31 - June 2, 2000 Proceedings /
_cedited by Ramon Lopez de Mantaras, Enric Plaza.
250 _a1st ed. 2000.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2000.
300 _aXII, 472 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Artificial Intelligence,
_x2945-9141 ;
_v1810
505 0 _aInvited Papers -- Beyond Occam’s Razor: Process-Oriented Evaluation -- The Representation Race — Preprocessing for Handling Time Phenomena -- Contributed Papers -- Short-Term Profiling for a Case-Based Reasoning Recommendation System -- K-SVCR. A Multi-class Support Vector Machine -- Learning Trading Rules with Inductive Logic Programming -- Improving Knowledge Discovery Using Domain Knowledge in Unsupervised Learning -- Exploiting Classifier Combination for Early Melanoma Diagnosis Support -- A Comparison of Ranking Methods for Classification Algorithm Selection -- Hidden Markov Models with Patterns and Their Application to Integrated Circuit Testing -- Comparing Complete and Partial Classification for Identifying Latently Dissatisfied Customers -- Wrapper Generation via Grammar Induction -- Diversity versus Quality in Classification Ensembles Based on Feature Selection -- Minimax TD-Learning with Neural Nets in a Markov Game -- Boosting Applied to Word Sense Disambiguation -- A Multiple Model Cost-Sensitive Approach for Intrusion Detection -- Value Miner: A Data Mining Environment for the Calculation of the Customer Lifetime Value with Application to the Automotive Industry -- Investigation and Reduction of Discretization Variance in Decision Tree Induction -- Asymmetric Co-evolution for Imperfect-Information Zero-Sum Games -- A Machine Learning Approach to Workflow Management -- The Utilization of Context Signals in the Analysis of ABR Potentials by Application of Neural Networks -- Complexity Approximation Principle and Rissanen’s Approach to Real-Valued Parameters -- Handling Continuous-Valued Attributes in Decision Tree with Neural Network Modeling -- Learning Context-Free Grammars with a Simplicity Bias -- Partially Supervised Text Classification: Combining Labeled and Unlabeled Documents Using an EM-like Scheme -- Toward an Explanatory Similarity Measure for Nearest-Neighbor Classification -- Relative Unsupervised Discretization for Regression Problems -- Metric-Based Inductive Learning Using Semantic Height Functions -- Error Analysis of Automatic Speech Recognition Using Principal Direction Divisive Partitioning -- A Study on the Performance of Large Bayes Classifier -- Dynamic Discretization of Continuous Values from Time Series -- Using a Symbolic Machine Learning Tool to Refine Lexico-syntactic Patterns -- Measuring Performance when Positives Are Rare: Relative Advantage versus Predictive Accuracy — A Biological Case-Study -- Mining TCP/IP Traffic for Network Intrusion Detection by Using a Distributed Genetic Algorithm -- Learning Patterns of Behavior by Observing System Events -- Dimensionality Reduction through Sub-space Mapping for Nearest Neighbour Algorithms -- Nonparametric Regularization of Decision Trees -- An Efficient and Effective Procedure for Updating a Competence Model for Case-Based Reasoners -- Layered Learning -- Problem Decomposition for Behavioural Cloning -- Dynamic Feature Selection in Incremental Hierarchical Clustering -- On the Boosting Pruning Problem -- An Empirical Study of MetaCost Using Boosting Algorithms -- Clustered Partial Linear Regression -- Knowledge Discovery from Very Large Databases Using Frequent Concept Lattices -- Some Improvements on Event-Sequence Temporal Region Methods.
520 _aThe biennial European Conference on Machine Learning (ECML) series is intended to provide an international forum for the discussion of the latest high quality research results in machine learning and is the major European scienti?c event in the ?eld. The eleventh conference (ECML 2000) held in Barcelona, Catalonia, Spain from May 31 to June 2, 2000, has continued this tradition by attracting high quality papers from around the world. Scientists from 21 countries submitted 100 papers to ECML 2000, from which 20 were selected for long oral presentations and 23 for short oral presentations. This selection was based on the recommendations of at least two reviewers for each submitted paper. It is worth noticing that the number of papers reporting applications of machine learning has increased in comparison to past ECML conferences. We believe this fact shows the growing maturity of the ?eld. This volume contains the 43 accepted papers as well as the invited talks by Katharina Morik from theUniversity of Dortmund and Pedro Domingos from the University of Washington at Seattle. In addition, three workshops were jointly organized by ECML 2000 and the European Network of Excellence - net: “Dealing with Structured Data in Machine Learning and Statistics W- stites”, “Machine Learning in the New Information Age” , and “Meta-Learning: Building Automatic Advice Strategies for Model Selection and Method Com- nation”.
650 0 _aDatabase management.
650 0 _aArtificial intelligence.
650 0 _aAlgorithms.
650 1 4 _aDatabase Management.
650 2 4 _aArtificial Intelligence.
650 2 4 _aAlgorithms.
700 1 _aLopez de Mantaras, Ramon.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
700 1 _aPlaza, Enric.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
710 2 _aSpringerLink (Online service)
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783540676027
776 0 8 _iPrinted edition:
_z9783662208434
830 0 _aLecture Notes in Artificial Intelligence,
_x2945-9141 ;
_v1810
856 4 0 _uhttps://doi.org/10.1007/3-540-45164-1
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
912 _aZDB-2-BAE
942 _cSPRINGER
999 _c187720
_d187720