000 03518nam a22006135i 4500
001 978-981-99-8964-5
003 DE-He213
005 20240423130330.0
007 cr nn 008mamaa
008 240325s2024 si | s |||| 0|eng d
020 _a9789819989645
_9978-981-99-8964-5
024 7 _a10.1007/978-981-99-8964-5
_2doi
050 4 _aQA75.5-76.95
072 7 _aUNH
_2bicssc
072 7 _aUND
_2bicssc
072 7 _aCOM030000
_2bisacsh
072 7 _aUNH
_2thema
072 7 _aUND
_2thema
082 0 4 _a025.04
_223
100 1 _aLi, Dongsheng.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aRecommender Systems
_h[electronic resource] :
_bFrontiers and Practices /
_cby Dongsheng Li, Jianxun Lian, Le Zhang, Kan Ren, Tun Lu, Tao Wu, Xing Xie.
250 _a1st ed. 2024.
264 1 _aSingapore :
_bSpringer Nature Singapore :
_bImprint: Springer,
_c2024.
300 _aXVI, 280 p. 92 illus., 75 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aChapter 1. Overview of Recommender Systems -- Chapter 2. Classic Recommendation Algorithms -- Chapter 3. Foundations of Deep Learning -- Chapter 4. Deep Learning-based Recommendation Algorithms -- Chapter 5. Recommender System Frontier Topics. Chapter 6. Practical Recommender System -- Chapter 7. Summary and Outlook.
520 _aThis book starts from the classic recommendation algorithms, introduces readers to the basic principles and main concepts of the traditional algorithms, and analyzes their advantages and limitations. Then, it addresses the fundamentals of deep learning, focusing on the deep-learning-based technology used, and analyzes problems arising in the theory and practice of recommender systems, helping readers gain a deeper understanding of the cutting-edge technology used in these systems. Lastly, it shares practical experience with Microsoft 's open source project Microsoft Recommenders. Readers can learn the design principles of recommendation algorithms using the source code provided in this book, allowing them to quickly build accurate and efficient recommender systems from scratch. .
650 0 _aInformation storage and retrieval systems.
650 0 _aData mining.
650 0 _aArtificial intelligence.
650 1 4 _aInformation Storage and Retrieval.
650 2 4 _aData Mining and Knowledge Discovery.
650 2 4 _aArtificial Intelligence.
700 1 _aLian, Jianxun.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
700 1 _aZhang, Le.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
700 1 _aRen, Kan.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
700 1 _aLu, Tun.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
700 1 _aWu, Tao.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
700 1 _aXie, Xing.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
710 2 _aSpringerLink (Online service)
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9789819989638
776 0 8 _iPrinted edition:
_z9789819989652
776 0 8 _iPrinted edition:
_z9789819989669
856 4 0 _uhttps://doi.org/10.1007/978-981-99-8964-5
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
942 _cSPRINGER
999 _c187442
_d187442