000 04222nam a22006735i 4500
001 978-3-030-46133-1
003 DE-He213
005 20240423125341.0
007 cr nn 008mamaa
008 200430s2020 sz | s |||| 0|eng d
020 _a9783030461331
_9978-3-030-46133-1
024 7 _a10.1007/978-3-030-46133-1
_2doi
050 4 _aQ334-342
050 4 _aTA347.A78
072 7 _aUYQ
_2bicssc
072 7 _aCOM004000
_2bisacsh
072 7 _aUYQ
_2thema
082 0 4 _a006.3
_223
245 1 0 _aMachine Learning and Knowledge Discovery in Databases
_h[electronic resource] :
_bEuropean Conference, ECML PKDD 2019, Würzburg, Germany, September 16–20, 2019, Proceedings, Part III /
_cedited by Ulf Brefeld, Elisa Fromont, Andreas Hotho, Arno Knobbe, Marloes Maathuis, Céline Robardet.
250 _a1st ed. 2020.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2020.
300 _aXXVIII, 804 p. 379 illus., 222 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Artificial Intelligence,
_x2945-9141 ;
_v11908
505 0 _aReinforcement Learning and Bandits -- Ranking -- Applied Data Science: Computer Vision and Explanation -- Applied Data Science: Healthcare -- Applied Data Science: E-commerce, Finance, and Advertising -- Applied Data Science: Rich Data -- Applied Data Science: Applications -- Demo Track.
520 _aThe three volume proceedings LNAI 11906 – 11908 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2019, held in Würzburg, Germany, in September 2019. The total of 130 regular papers presented in these volumes was carefully reviewed and selected from 733 submissions; there are 10 papers in the demo track. The contributions were organized in topical sections named as follows: Part I: pattern mining; clustering, anomaly and outlier detection, and autoencoders; dimensionality reduction and feature selection; social networks and graphs; decision trees, interpretability, and causality; strings and streams; privacy and security; optimization. Part II: supervised learning; multi-label learning; large-scale learning; deep learning; probabilistic models; natural language processing. Part III: reinforcement learning and bandits; ranking; applied data science: computer vision and explanation; applied data science: healthcare; applied data science: e-commerce, finance, and advertising; applied data science: rich data; applied data science: applications; demo track.
650 0 _aArtificial intelligence.
650 0 _aApplication software.
650 0 _aDatabase management.
650 0 _aComputers.
650 0 _aComputer engineering.
650 0 _aComputer networks .
650 1 4 _aArtificial Intelligence.
650 2 4 _aComputer and Information Systems Applications.
650 2 4 _aDatabase Management System.
650 2 4 _aComputing Milieux.
650 2 4 _aComputer Engineering and Networks.
700 1 _aBrefeld, Ulf.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
700 1 _aFromont, Elisa.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
700 1 _aHotho, Andreas.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
700 1 _aKnobbe, Arno.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
700 1 _aMaathuis, Marloes.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
700 1 _aRobardet, Céline.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
710 2 _aSpringerLink (Online service)
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783030461324
776 0 8 _iPrinted edition:
_z9783030461348
830 0 _aLecture Notes in Artificial Intelligence,
_x2945-9141 ;
_v11908
856 4 0 _uhttps://doi.org/10.1007/978-3-030-46133-1
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cSPRINGER
999 _c176985
_d176985