000 04462nam a22006495i 4500
001 978-3-540-78469-2
003 DE-He213
005 20240423125311.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 _a9783540784692
_9978-3-540-78469-2
024 7 _a10.1007/978-3-540-78469-2
_2doi
050 4 _aQ334-342
050 4 _aTA347.A78
072 7 _aUYQ
_2bicssc
072 7 _aCOM004000
_2bisacsh
072 7 _aUYQ
_2thema
082 0 4 _a006.3
_223
245 1 0 _aInductive Logic Programming
_h[electronic resource] :
_b17th International Conference, ILP 2007, Corvallis, OR, USA, June 19-21, 2007, Revised Selected Papers /
_cedited by Hendrik Blockeel, Jan Ramon, Jude Shavlik, Prasad Tadepalli.
250 _a1st ed. 2008.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2008.
300 _aXI, 307 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Artificial Intelligence,
_x2945-9141 ;
_v4894
505 0 _aInvited Talks -- Learning with Kernels and Logical Representations -- Beyond Prediction: Directions for Probabilistic and Relational Learning -- Extended Abstracts -- Learning Probabilistic Logic Models from Probabilistic Examples (Extended Abstract) -- Learning Directed Probabilistic Logical Models Using Ordering-Search -- Learning to Assign Degrees of Belief in Relational Domains -- Bias/Variance Analysis for Relational Domains -- Full Papers -- Induction of Optimal Semantic Semi-distances for Clausal Knowledge Bases -- Clustering Relational Data Based on Randomized Propositionalization -- Structural Statistical Software Testing with Active Learning in a Graph -- Learning Declarative Bias -- ILP :- Just Trie It -- Learning Relational Options for Inductive Transfer in Relational Reinforcement Learning -- Empirical Comparison of “Hard” and “Soft” Label Propagation for Relational Classification -- A Phase Transition-Based Perspective on Multiple Instance Kernels -- Combining Clauses with Various Precisions and Recalls to Produce Accurate Probabilistic Estimates -- Applying Inductive Logic Programming to Process Mining -- A Refinement Operator Based Learning Algorithm for the Description Logic -- Foundations of Refinement Operators for Description Logics -- A Relational Hierarchical Model for Decision-Theoretic Assistance -- Using Bayesian Networks to Direct Stochastic Search in Inductive Logic Programming -- Revising First-Order Logic Theories from Examples Through Stochastic Local Search -- Using ILP to Construct Features for Information Extraction from Semi-structured Text -- Mode-Directed Inverse Entailment for Full Clausal Theories -- Mining of Frequent Block Preserving Outerplanar Graph Structured Patterns -- Relational Macros for Transfer in Reinforcement Learning -- Seeing theForest Through the Trees -- Building Relational World Models for Reinforcement Learning -- An Inductive Learning System for XML Documents.
650 0 _aArtificial intelligence.
650 0 _aSoftware engineering.
650 0 _aComputer programming.
650 0 _aMachine theory.
650 0 _aAlgorithms.
650 0 _aData mining.
650 1 4 _aArtificial Intelligence.
650 2 4 _aSoftware Engineering.
650 2 4 _aProgramming Techniques.
650 2 4 _aFormal Languages and Automata Theory.
650 2 4 _aAlgorithms.
650 2 4 _aData Mining and Knowledge Discovery.
700 1 _aBlockeel, Hendrik.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
700 1 _aRamon, Jan.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
700 1 _aShavlik, Jude.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
700 1 _aTadepalli, Prasad.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
710 2 _aSpringerLink (Online service)
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783540784685
776 0 8 _iPrinted edition:
_z9783540847694
830 0 _aLecture Notes in Artificial Intelligence,
_x2945-9141 ;
_v4894
856 4 0 _uhttps://doi.org/10.1007/978-3-540-78469-2
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cSPRINGER
999 _c176443
_d176443