000 03414nam a22005895i 4500
001 978-981-15-3928-2
003 DE-He213
005 20240423125012.0
007 cr nn 008mamaa
008 200701s2020 si | s |||| 0|eng d
020 _a9789811539282
_9978-981-15-3928-2
024 7 _a10.1007/978-981-15-3928-2
_2doi
050 4 _aQA76.9.B45
072 7 _aUN
_2bicssc
072 7 _aCOM021000
_2bisacsh
072 7 _aUN
_2thema
082 0 4 _a005.7
_223
100 1 _aShao, Yingxia.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aLarge-scale Graph Analysis: System, Algorithm and Optimization
_h[electronic resource] /
_cby Yingxia Shao, Bin Cui, Lei Chen.
250 _a1st ed. 2020.
264 1 _aSingapore :
_bSpringer Nature Singapore :
_bImprint: Springer,
_c2020.
300 _aXIII, 146 p. 78 illus., 30 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aBig Data Management,
_x2522-0187
505 0 _a1. Introduction -- 2. Graph Computing Systems for Large-Scale Graph Analysis -- 3. Partition-Aware Graph Computing System -- 4. Efficient Parallel Subgraph Enumeration -- 5. Efficient Parallel Graph Extraction -- 6. Efficient Parallel Cohesive Subgraph Detection -- 7. Conclusions.
520 _aThis book introduces readers to a workload-aware methodology for large-scale graph algorithm optimization in graph-computing systems, and proposes several optimization techniques that can enable these systems to handle advanced graph algorithms efficiently. More concretely, it proposes a workload-aware cost model to guide the development of high-performance algorithms. On the basis of the cost model, the book subsequently presents a system-level optimization resulting in a partition-aware graph-computing engine, PAGE. In addition, it presents three efficient and scalable advanced graph algorithms – the subgraph enumeration, cohesive subgraph detection, and graph extraction algorithms. This book offers a valuable reference guide for junior researchers, covering the latest advances in large-scale graph analysis; and for senior researchers, sharing state-of-the-art solutions based on advanced graph algorithms. In addition, all readers will find a workload-aware methodology fordesigning efficient large-scale graph algorithms.
650 0 _aBig data.
650 0 _aData mining.
650 0 _aGraph theory.
650 0 _aElectronic data processing
_xManagement.
650 1 4 _aBig Data.
650 2 4 _aData Mining and Knowledge Discovery.
650 2 4 _aGraph Theory.
650 2 4 _aIT Operations.
700 1 _aCui, Bin.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
700 1 _aChen, Lei.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
710 2 _aSpringerLink (Online service)
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9789811539275
776 0 8 _iPrinted edition:
_z9789811539299
776 0 8 _iPrinted edition:
_z9789811539305
830 0 _aBig Data Management,
_x2522-0187
856 4 0 _uhttps://doi.org/10.1007/978-981-15-3928-2
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
942 _cSPRINGER
999 _c173116
_d173116