Amazon cover image
Image from Amazon.com

X86 assembly language and C fundamentals

By: Material type: TextTextPublication details: Boca Raton, FL : CRC Press, ©2013.Description: xxiv, 789 p. : ill. ; 26 cmISBN:
  • 9781466568242
Subject(s): DDC classification:
  • 005.136 23 CAV-X
LOC classification:
  • QA76.73.X16 C38 2013
Other classification:
  • COM059000 | TEC007000 | TEC008010
Summary: "PREFACE Although assembly language is not as prevalent as a high-level language, such as C or an object-oriented language like C++, it is the predominant language used in embedded microprocessors. A course in a high-level language, such as C usually precedes a course in assembly language. Assembly language programming requires a knowledge of number representations, such as fixed-point, decimal, and floating-point; also digital logic, registers, and stacks. In order to thoroughly understand assembly language, it is necessary to be familiar with the architecture of the computer on which the language is being used. For the X86 assembly language, this implies the Intel and Intel-like microprocessors. Programs written in assembly language are usually faster and more compact than programs written in a high-level language and provide greater control over the program application. Assembly language is machine dependent; that is, it is used only with a specific type of processor. A high-level language, however, is usually machine independent; that is, it can be used with any processor. Assembly language programs use an assembler to convert the assembly language code to the machine language of 1s and 0s. This is in contrast to high-level languages which use compilers to accomplish the transformation. Assembly languages consist of mnemonic codes, which are similar to English words, making the program easy to read. For example, the MOV instruction moves data from a source location to a destination location; the XCHG instruction exchanges the contents of a source location and a destination location; and the logical AND instruction performs the bitwise AND operation of two operands"--
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Books Books IIITD Reference Computer Science and Engineering REF 005.136 CAV-X (Browse shelf(Opens below)) Loan on demand 007800
Total holds: 0

Includes bibliographical references and index.

"PREFACE Although assembly language is not as prevalent as a high-level language, such as C or an object-oriented language like C++, it is the predominant language used in embedded microprocessors. A course in a high-level language, such as C usually precedes a course in assembly language. Assembly language programming requires a knowledge of number representations, such as fixed-point, decimal, and floating-point; also digital logic, registers, and stacks. In order to thoroughly understand assembly language, it is necessary to be familiar with the architecture of the computer on which the language is being used. For the X86 assembly language, this implies the Intel and Intel-like microprocessors. Programs written in assembly language are usually faster and more compact than programs written in a high-level language and provide greater control over the program application. Assembly language is machine dependent; that is, it is used only with a specific type of processor. A high-level language, however, is usually machine independent; that is, it can be used with any processor. Assembly language programs use an assembler to convert the assembly language code to the machine language of 1s and 0s. This is in contrast to high-level languages which use compilers to accomplish the transformation. Assembly languages consist of mnemonic codes, which are similar to English words, making the program easy to read. For example, the MOV instruction moves data from a source location to a destination location; the XCHG instruction exchanges the contents of a source location and a destination location; and the logical AND instruction performs the bitwise AND operation of two operands"--

There are no comments on this title.

to post a comment.
© 2024 IIIT-Delhi, library@iiitd.ac.in