Amazon cover image
Image from Amazon.com

Learning Robots [electronic resource] : 6th European Workshop EWLR-6, Brighton, England, August 1-2, 1997 Proceedings /

Contributor(s): Material type: TextTextSeries: Lecture Notes in Artificial Intelligence ; 1545Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1998Edition: 1st ed. 1998Description: X, 194 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783540492405
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 629.8 23
LOC classification:
  • TJ212-225
  • TJ210.2-211.495
Online resources:
Contents:
The construction and acquisition of visual categories -- Q-Learning with Adaptive State Space Construction -- Modular Reinforcement Learning: An Application to a Real Robot Task -- Analysis and Design of Robot’s Behavior: Towards a Methodology -- Vision Based State Space Construction for Learning Mobile Robots in Multi Agent Environments -- Transmitting Communication Skills Through Imitation in Autonomous Robots -- Continual Robot Learning with Constructive Neural Networks -- Robot Learning and Self-Sufficiency: What the energy-level can tell us about a robot’s performance -- Perceptual grounding in robots -- A Learning Mobile Robot: Theory, Simulation and Practice -- Learning Complex Robot Behaviours by Evolutionary Computing with Task Decomposition -- Robot Learning using Gate-Level Evolvable Hardware.
In: Springer Nature eBookSummary: Robot learning is a broad and interdisciplinary area. This holds with regard to the basic interests and the scienti c background of the researchers involved, as well as with regard to the techniques and approaches used. The interests that motivate the researchers in this eld range from fundamental research issues, such as how to constructively understand intelligence, to purely application o- ented work, such as the exploitation of learning techniques for industrial robotics. Given this broad scope of interests, it is not surprising that, although AI and robotics are usually the core of the robot learning eld, disciplines like cog- tive science, mathematics, social sciences, neuroscience, biology, and electrical engineering have also begun to play a role in it. In this way, its interdisciplinary character is more than a mere fashion, and leads to a productive exchange of ideas. One of the aims of EWLR-6 was to foster this exchange of ideas and to f- ther boost contacts between the di erent scienti c areas involved in learning robots. EWLR is, traditionally, a \European Workshop on Learning Robots". Nevertheless, the organizers of EWLR-6 decided to open up the workshop to non-European research as well, and included in the program committee we- known non-European researchers. This strategy proved to be successful since there was a strong participation in the workshop from researchers outside - rope, especially from Japan, which provided new ideas and lead to new contacts.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

The construction and acquisition of visual categories -- Q-Learning with Adaptive State Space Construction -- Modular Reinforcement Learning: An Application to a Real Robot Task -- Analysis and Design of Robot’s Behavior: Towards a Methodology -- Vision Based State Space Construction for Learning Mobile Robots in Multi Agent Environments -- Transmitting Communication Skills Through Imitation in Autonomous Robots -- Continual Robot Learning with Constructive Neural Networks -- Robot Learning and Self-Sufficiency: What the energy-level can tell us about a robot’s performance -- Perceptual grounding in robots -- A Learning Mobile Robot: Theory, Simulation and Practice -- Learning Complex Robot Behaviours by Evolutionary Computing with Task Decomposition -- Robot Learning using Gate-Level Evolvable Hardware.

Robot learning is a broad and interdisciplinary area. This holds with regard to the basic interests and the scienti c background of the researchers involved, as well as with regard to the techniques and approaches used. The interests that motivate the researchers in this eld range from fundamental research issues, such as how to constructively understand intelligence, to purely application o- ented work, such as the exploitation of learning techniques for industrial robotics. Given this broad scope of interests, it is not surprising that, although AI and robotics are usually the core of the robot learning eld, disciplines like cog- tive science, mathematics, social sciences, neuroscience, biology, and electrical engineering have also begun to play a role in it. In this way, its interdisciplinary character is more than a mere fashion, and leads to a productive exchange of ideas. One of the aims of EWLR-6 was to foster this exchange of ideas and to f- ther boost contacts between the di erent scienti c areas involved in learning robots. EWLR is, traditionally, a \European Workshop on Learning Robots". Nevertheless, the organizers of EWLR-6 decided to open up the workshop to non-European research as well, and included in the program committee we- known non-European researchers. This strategy proved to be successful since there was a strong participation in the workshop from researchers outside - rope, especially from Japan, which provided new ideas and lead to new contacts.

There are no comments on this title.

to post a comment.
© 2024 IIIT-Delhi, library@iiitd.ac.in