Amazon cover image
Image from Amazon.com

Assessing COVID-19 and Other Pandemics and Epidemics using Computational Modelling and Data Analysis [electronic resource] /

Contributor(s): Material type: TextTextPublisher: Cham : Springer International Publishing : Imprint: Springer, 2022Edition: 1st ed. 2022Description: XXVI, 405 p. 164 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783030797539
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 006.3 23
LOC classification:
  • Q334-342
  • TA347.A78
Online resources:
Contents:
Chapter 1 Artificial Intelligence (AI) and Big Data Analytics for COVID-19 Pandemic -- Chapter 2 COVID-19 TravelCover Post-lockdown Smart Transportation Management System for COVID-19 -- Chapter 3 Diverse techniques applied for effective diagnosis of COVID 19 -- Chapter 4 A Review on Detection of Covid-19 Patients using Deep Learning Techniques.-Chapter 5 Internet of Health Things (IoHT) for COVID 19 -- Chapter 6 Diagnosis for COVID-19 -- Chapter 7 IoT in Combating Covid 19 Pandemics Lessons for Developing Countries -- Chapter 8 Machine learning approaches for COVID 19 pandemic -- Chapter 9 Smart sensing for COVID 19 Pandemic -- Chapter 10 eHealth, mHealth and Telemedicine for COVID-19 pandemic -- Chapter 11 Prediction of care for patients in a Covid-19 pandemic situation based on haematological parameters -- Chapter 12 Bioinformatics in Diagnosis of Covid-19 -- Chapter 13 Predicting the Covid-19 Morbidity Outspread and Mortality Using Deep Learning Techniques -- Chapter 14 LSTM -CNN Deep learning Based Hybrid system for real time COVID-19 data analysis and prediction using Twitter data -- Chapter 15 An intelligent tool to support diagnosis of Covid-19 by texture analysis of computerized tomography x-ray images and machine learning -- Chapter 16 Analysis of Blockchain Backed Covid19 Data -- Chapter 17 Intelligent systems for dengue, chikungunya and zika temporal and spatio-temporal forecasting a contribution and a brief review -- Chapter 18 Machine learning approaches for temporal and spatio-temporal Covid-19 forecasting a brief review and a contribution -- Chapter 19 Image Reconstruction for COVID-19 using Multi-frequency Electrical Impedance Tomography.
In: Springer Nature eBookSummary: This book comprehensively covers the topic of COVID-19 and other pandemics and epidemics data analytics using computational modelling. Biomedical and Health Informatics is an emerging field of research at the intersection of information science, computer science, and health care. The new era of pandemics and epidemics bring tremendous opportunities and challenges due to the plentiful and easily available medical data allowing for further analysis. The aim of pandemics and epidemics research is to ensure high-quality, efficient healthcare, better treatment and quality of life by efficiently analyzing the abundant medical, and healthcare data including patient’s data, electronic health records (EHRs) and lifestyle. Assessing COVID-19 and Other Pandemics and Epidemics using Computational Modelling and Data Analysis will play a vital role in improving human life in response to pandemics and epidemics. The state-of-the-art approaches for data mining-based medical and health related applications will be of great value to researchers and practitioners working in biomedical, health informatics, and artificial intelligence.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Chapter 1 Artificial Intelligence (AI) and Big Data Analytics for COVID-19 Pandemic -- Chapter 2 COVID-19 TravelCover Post-lockdown Smart Transportation Management System for COVID-19 -- Chapter 3 Diverse techniques applied for effective diagnosis of COVID 19 -- Chapter 4 A Review on Detection of Covid-19 Patients using Deep Learning Techniques.-Chapter 5 Internet of Health Things (IoHT) for COVID 19 -- Chapter 6 Diagnosis for COVID-19 -- Chapter 7 IoT in Combating Covid 19 Pandemics Lessons for Developing Countries -- Chapter 8 Machine learning approaches for COVID 19 pandemic -- Chapter 9 Smart sensing for COVID 19 Pandemic -- Chapter 10 eHealth, mHealth and Telemedicine for COVID-19 pandemic -- Chapter 11 Prediction of care for patients in a Covid-19 pandemic situation based on haematological parameters -- Chapter 12 Bioinformatics in Diagnosis of Covid-19 -- Chapter 13 Predicting the Covid-19 Morbidity Outspread and Mortality Using Deep Learning Techniques -- Chapter 14 LSTM -CNN Deep learning Based Hybrid system for real time COVID-19 data analysis and prediction using Twitter data -- Chapter 15 An intelligent tool to support diagnosis of Covid-19 by texture analysis of computerized tomography x-ray images and machine learning -- Chapter 16 Analysis of Blockchain Backed Covid19 Data -- Chapter 17 Intelligent systems for dengue, chikungunya and zika temporal and spatio-temporal forecasting a contribution and a brief review -- Chapter 18 Machine learning approaches for temporal and spatio-temporal Covid-19 forecasting a brief review and a contribution -- Chapter 19 Image Reconstruction for COVID-19 using Multi-frequency Electrical Impedance Tomography.

This book comprehensively covers the topic of COVID-19 and other pandemics and epidemics data analytics using computational modelling. Biomedical and Health Informatics is an emerging field of research at the intersection of information science, computer science, and health care. The new era of pandemics and epidemics bring tremendous opportunities and challenges due to the plentiful and easily available medical data allowing for further analysis. The aim of pandemics and epidemics research is to ensure high-quality, efficient healthcare, better treatment and quality of life by efficiently analyzing the abundant medical, and healthcare data including patient’s data, electronic health records (EHRs) and lifestyle. Assessing COVID-19 and Other Pandemics and Epidemics using Computational Modelling and Data Analysis will play a vital role in improving human life in response to pandemics and epidemics. The state-of-the-art approaches for data mining-based medical and health related applications will be of great value to researchers and practitioners working in biomedical, health informatics, and artificial intelligence.

There are no comments on this title.

to post a comment.
© 2024 IIIT-Delhi, library@iiitd.ac.in