Amazon cover image
Image from Amazon.com

Artificial Intelligence and Cyber Security in Industry 4.0 [electronic resource] /

Contributor(s): Material type: TextTextSeries: Advanced Technologies and Societal ChangePublisher: Singapore : Springer Nature Singapore : Imprint: Springer, 2023Edition: 1st ed. 2023Description: VIII, 373 p. 100 illus., 86 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9789819921157
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 006.3 23
LOC classification:
  • Q334-342
  • TA347.A78
Online resources:
Contents:
Introduction to Artificial Intelligence and Cyber Security for Industry -- Role of AI and its impact on the development of cyber security applications -- AI and IoT in Manufacturing and related Security Perspectives for Industry 4.0 -- IoT Security Vulnerabilities and Defensive Measures in Industry 4.0 -- Adopting Artificial Intelligence in ITIL for Information Security Management - Way forward in Industry 4.0 -- Intelligent Autonomous Drones in Industry 4.0 -- A review on automatic generation of attack trees and its application to automotive cybersecurity -- Malware Analysis using Machine Learning Tools and Techniques in IT Industry -- USE OF MACHINE LEARNING IN FORENSICS AND COMPUTER SECURITY -- Control of feed drives in CNC machine tools using artificial immune adaptive strategy -- Efficient Anomaly Detection for Empowering Cyber Security by Using Adaptive Deep Learning Model -- Intrusion Detection in IoT based Healthcare Using ML and DL approaches: A Case Study -- War Strategy Algorithm based GAN model for Detecting the Malware Attacks in Modern Digital Age -- ML algorithms for providing financial security in banking sectors with the prediction of loan risks -- Machine Learning based DDoS Attack Detection using Support Vector Machine -- Artificial Intelligence based Cyber Security Applications.
In: Springer Nature eBookSummary: This book provides theoretical background and state-of-the-art findings in artificial intelligence and cybersecurity for industry 4.0 and helps in implementing AI-based cybersecurity applications. Machine learning-based security approaches are vulnerable to poison datasets which can be caused by a legitimate defender's misclassification or attackers aiming to evade detection by contaminating the training data set. There also exist gaps between the test environment and the real world. Therefore, it is critical to check the potentials and limitations of AI-based security technologies in terms of metrics such as security, performance, cost, time, and consider how to incorporate them into the real world by addressing the gaps appropriately. This book focuses on state-of-the-art findings from both academia and industry in big data security relevant sciences, technologies, and applications.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Introduction to Artificial Intelligence and Cyber Security for Industry -- Role of AI and its impact on the development of cyber security applications -- AI and IoT in Manufacturing and related Security Perspectives for Industry 4.0 -- IoT Security Vulnerabilities and Defensive Measures in Industry 4.0 -- Adopting Artificial Intelligence in ITIL for Information Security Management - Way forward in Industry 4.0 -- Intelligent Autonomous Drones in Industry 4.0 -- A review on automatic generation of attack trees and its application to automotive cybersecurity -- Malware Analysis using Machine Learning Tools and Techniques in IT Industry -- USE OF MACHINE LEARNING IN FORENSICS AND COMPUTER SECURITY -- Control of feed drives in CNC machine tools using artificial immune adaptive strategy -- Efficient Anomaly Detection for Empowering Cyber Security by Using Adaptive Deep Learning Model -- Intrusion Detection in IoT based Healthcare Using ML and DL approaches: A Case Study -- War Strategy Algorithm based GAN model for Detecting the Malware Attacks in Modern Digital Age -- ML algorithms for providing financial security in banking sectors with the prediction of loan risks -- Machine Learning based DDoS Attack Detection using Support Vector Machine -- Artificial Intelligence based Cyber Security Applications.

This book provides theoretical background and state-of-the-art findings in artificial intelligence and cybersecurity for industry 4.0 and helps in implementing AI-based cybersecurity applications. Machine learning-based security approaches are vulnerable to poison datasets which can be caused by a legitimate defender's misclassification or attackers aiming to evade detection by contaminating the training data set. There also exist gaps between the test environment and the real world. Therefore, it is critical to check the potentials and limitations of AI-based security technologies in terms of metrics such as security, performance, cost, time, and consider how to incorporate them into the real world by addressing the gaps appropriately. This book focuses on state-of-the-art findings from both academia and industry in big data security relevant sciences, technologies, and applications.

There are no comments on this title.

to post a comment.
© 2024 IIIT-Delhi, library@iiitd.ac.in