Amazon cover image
Image from Amazon.com

Fog Data Analytics for IoT Applications [electronic resource] : Next Generation Process Model with State of the Art Technologies /

Contributor(s): Material type: TextTextSeries: Studies in Big Data ; 76Publisher: Singapore : Springer Nature Singapore : Imprint: Springer, 2020Edition: 1st ed. 2020Description: XV, 497 p. 209 illus., 172 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9789811560446
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 006.3 23
LOC classification:
  • Q342
Online resources:
Contents:
Introduction -- Introduction to Fog data analytics for IoT applications -- Fog Data Analytics: Systematic Computational Classification and Procedural Paradigm -- Fog Computing: Building a Road to IoT with Fog Analytics -- Data Collection in Fog Data Analytics -- Mobile FOG Architecture Assisted Continuous Acquisition of Fetal ECG Data for Efficient Prediction -- Proposed Framework for Fog Computing to Improve Quality-of-Service in IoT applications -- Fog Data Based Statistical Analysis to Check Effects of Yajna and Mantra Science: Next Generation Health Practices -- Process Model for Fog Data Analytics for IoT Applications -- Medical Analytics Based on Artificial Neural Networks Using Cognitive Internet of Things.
In: Springer Nature eBookSummary: This book discusses the unique nature and complexity of fog data analytics (FDA) and develops a comprehensive taxonomy abstracted into a process model. The exponential increase in sensors and smart gadgets (collectively referred as smart devices or Internet of things (IoT) devices) has generated significant amount of heterogeneous and multimodal data, known as big data. To deal with this big data, we require efficient and effective solutions, such as data mining, data analytics and reduction to be deployed at the edge of fog devices on a cloud. Current research and development efforts generally focus on big data analytics and overlook the difficulty of facilitating fog data analytics (FDA). This book presents a model that addresses various research challenges, such as accessibility, scalability, fog nodes communication, nodal collaboration, heterogeneity, reliability, and quality of service (QoS) requirements, and includes case studies demonstrating its implementation. Focusing on FDAin IoT and requirements related to Industry 4.0, it also covers all aspects required to manage the complexity of FDA for IoT applications and also develops a comprehensive taxonomy.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Introduction -- Introduction to Fog data analytics for IoT applications -- Fog Data Analytics: Systematic Computational Classification and Procedural Paradigm -- Fog Computing: Building a Road to IoT with Fog Analytics -- Data Collection in Fog Data Analytics -- Mobile FOG Architecture Assisted Continuous Acquisition of Fetal ECG Data for Efficient Prediction -- Proposed Framework for Fog Computing to Improve Quality-of-Service in IoT applications -- Fog Data Based Statistical Analysis to Check Effects of Yajna and Mantra Science: Next Generation Health Practices -- Process Model for Fog Data Analytics for IoT Applications -- Medical Analytics Based on Artificial Neural Networks Using Cognitive Internet of Things.

This book discusses the unique nature and complexity of fog data analytics (FDA) and develops a comprehensive taxonomy abstracted into a process model. The exponential increase in sensors and smart gadgets (collectively referred as smart devices or Internet of things (IoT) devices) has generated significant amount of heterogeneous and multimodal data, known as big data. To deal with this big data, we require efficient and effective solutions, such as data mining, data analytics and reduction to be deployed at the edge of fog devices on a cloud. Current research and development efforts generally focus on big data analytics and overlook the difficulty of facilitating fog data analytics (FDA). This book presents a model that addresses various research challenges, such as accessibility, scalability, fog nodes communication, nodal collaboration, heterogeneity, reliability, and quality of service (QoS) requirements, and includes case studies demonstrating its implementation. Focusing on FDAin IoT and requirements related to Industry 4.0, it also covers all aspects required to manage the complexity of FDA for IoT applications and also develops a comprehensive taxonomy.

There are no comments on this title.

to post a comment.
© 2024 IIIT-Delhi, library@iiitd.ac.in