Joint Training for Neural Machine Translation [electronic resource] /
Material type: TextSeries: Springer Theses, Recognizing Outstanding Ph.D. ResearchPublisher: Singapore : Springer Nature Singapore : Imprint: Springer, 2019Edition: 1st ed. 2019Description: XIII, 78 p. 23 illus., 9 illus. in color. online resourceContent type:- text
- computer
- online resource
- 9789813297487
- 006.35 23
- QA76.9.N38
1. Introduction -- 2. Neural Machine Translation -- 3. Agreement-based Joint Training for Bidirectional Attention-based Neural Machine Translation -- 4. Semi-supervised Learning for Neural Machine Translation -- 5. Joint Training for Pivot-based Neural Machine Translation -- 6. Joint Modeling for Bidirectional Neural Machine Translation with Contrastive Learning -- 7. Related Work -- 8. Conclusion.
This book presents four approaches to jointly training bidirectional neural machine translation (NMT) models. First, in order to improve the accuracy of the attention mechanism, it proposes an agreement-based joint training approach to help the two complementary models agree on word alignment matrices for the same training data. Second, it presents a semi-supervised approach that uses an autoencoder to reconstruct monolingual corpora, so as to incorporate these corpora into neural machine translation. It then introduces a joint training algorithm for pivot-based neural machine translation, which can be used to mitigate the data scarcity problem. Lastly it describes an end-to-end bidirectional NMT model to connect the source-to-target and target-to-source translation models, allowing the interaction of parameters between these two directional models.
There are no comments on this title.