Amazon cover image
Image from Amazon.com

Broad Learning Through Fusions [electronic resource] : An Application on Social Networks /

By: Contributor(s): Material type: TextTextPublisher: Cham : Springer International Publishing : Imprint: Springer, 2019Edition: 1st ed. 2019Description: XV, 419 p. 104 illus., 81 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783030125288
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 006.312 23
LOC classification:
  • QA76.9.D343
Online resources:
Contents:
1 Broad Learning Introduction -- 2 Machine Learning Overview -- 3 Social Network Overview -- 4 Supervised Network Alignment -- 5 Unsupervised Network Alignment -- 6 Semi-supervised Network Alignment -- 7 Link Prediction -- 8 Community Detection -- 9 Information Diffusion -- 10 Viral Marketing -- 11 Network Embedding -- 12 Frontier and Future Directions -- References.
In: Springer Nature eBookSummary: This book offers a clear and comprehensive introduction to broad learning, one of the novel learning problems studied in data mining and machine learning. Broad learning aims at fusing multiple large-scale information sources of diverse varieties together, and carrying out synergistic data mining tasks across these fused sources in one unified analytic. This book takes online social networks as an application example to introduce the latest alignment and knowledge discovery algorithms. Besides the overview of broad learning, machine learning and social network basics, specific topics covered in this book include network alignment, link prediction, community detection, information diffusion, viral marketing, and network embedding.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

1 Broad Learning Introduction -- 2 Machine Learning Overview -- 3 Social Network Overview -- 4 Supervised Network Alignment -- 5 Unsupervised Network Alignment -- 6 Semi-supervised Network Alignment -- 7 Link Prediction -- 8 Community Detection -- 9 Information Diffusion -- 10 Viral Marketing -- 11 Network Embedding -- 12 Frontier and Future Directions -- References.

This book offers a clear and comprehensive introduction to broad learning, one of the novel learning problems studied in data mining and machine learning. Broad learning aims at fusing multiple large-scale information sources of diverse varieties together, and carrying out synergistic data mining tasks across these fused sources in one unified analytic. This book takes online social networks as an application example to introduce the latest alignment and knowledge discovery algorithms. Besides the overview of broad learning, machine learning and social network basics, specific topics covered in this book include network alignment, link prediction, community detection, information diffusion, viral marketing, and network embedding.

There are no comments on this title.

to post a comment.
© 2024 IIIT-Delhi, library@iiitd.ac.in