Amazon cover image
Image from Amazon.com

Educational Data Science: Essentials, Approaches, and Tendencies [electronic resource] : Proactive Education based on Empirical Big Data Evidence /

Contributor(s): Material type: TextTextSeries: Big Data ManagementPublisher: Singapore : Springer Nature Singapore : Imprint: Springer, 2023Edition: 1st ed. 2023Description: XIII, 291 p. 1 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9789819900268
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 005.7 23
LOC classification:
  • Q336
Online resources:
Contents:
1. Engaging in Student-Centered Educational Data Science through Learning Engineering -- 2. A review of clustering models in educational data science towards fairness-aware learning -- 3. Educational Data Science: Is an “Umbrella Term” or an Emergent Domain? -- 4. Educational Data Science Approach for End-to-End Quality Assurance Process for Building Credit-Worthy Online Courses -- 5. Understanding the Effect of Cohesion in Academic Writing Clarity Using Education Data Science -- 6. Sequential pattern mining in educational data: the application context, potential, strengths, and limitations -- 7. Sync Ratio and Cluster Heat Map for Visualizing Student Engagement.
In: Springer Nature eBookSummary: This book describes theoretical elements, practical approaches, and specialized tools that systematically organize, characterize, and analyze big data gathered from educational affairs and settings. Moreover, the book shows several inference criteria to leverage and produce descriptive, explanatory, and predictive closures to study and understand education phenomena at in classroom and online environments. This is why diverse researchers and scholars contribute with valuable chapters to ground with well-–sounded theoretical and methodological constructs in the novel field of Educational Data Science (EDS), which examines academic big data repositories, as well as to introduces systematic reviews, reveals valuable insights, and promotes its application to extend its practice. EDS as a transdisciplinary field relies on statistics, probability, machine learning, data mining, and analytics, in addition to biological, psychological, and neurological knowledge aboutlearning science. With this in mind, the book is devoted to those that are in charge of educational management, educators, pedagogues, academics, computer technologists, researchers, and postgraduate students, who pursue to acquire a conceptual, formal, and practical landscape of how to deploy EDS to build proactive, real- time, and reactive applications that personalize education, enhance teaching, and improve learning!
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

1. Engaging in Student-Centered Educational Data Science through Learning Engineering -- 2. A review of clustering models in educational data science towards fairness-aware learning -- 3. Educational Data Science: Is an “Umbrella Term” or an Emergent Domain? -- 4. Educational Data Science Approach for End-to-End Quality Assurance Process for Building Credit-Worthy Online Courses -- 5. Understanding the Effect of Cohesion in Academic Writing Clarity Using Education Data Science -- 6. Sequential pattern mining in educational data: the application context, potential, strengths, and limitations -- 7. Sync Ratio and Cluster Heat Map for Visualizing Student Engagement.

This book describes theoretical elements, practical approaches, and specialized tools that systematically organize, characterize, and analyze big data gathered from educational affairs and settings. Moreover, the book shows several inference criteria to leverage and produce descriptive, explanatory, and predictive closures to study and understand education phenomena at in classroom and online environments. This is why diverse researchers and scholars contribute with valuable chapters to ground with well-–sounded theoretical and methodological constructs in the novel field of Educational Data Science (EDS), which examines academic big data repositories, as well as to introduces systematic reviews, reveals valuable insights, and promotes its application to extend its practice. EDS as a transdisciplinary field relies on statistics, probability, machine learning, data mining, and analytics, in addition to biological, psychological, and neurological knowledge aboutlearning science. With this in mind, the book is devoted to those that are in charge of educational management, educators, pedagogues, academics, computer technologists, researchers, and postgraduate students, who pursue to acquire a conceptual, formal, and practical landscape of how to deploy EDS to build proactive, real- time, and reactive applications that personalize education, enhance teaching, and improve learning!

There are no comments on this title.

to post a comment.
© 2024 IIIT-Delhi, library@iiitd.ac.in