Amazon cover image
Image from Amazon.com

Evolutionary Learning: Advances in Theories and Algorithms [electronic resource] /

By: Contributor(s): Material type: TextTextPublisher: Singapore : Springer Nature Singapore : Imprint: Springer, 2019Edition: 1st ed. 2019Description: XII, 361 p. 59 illus., 20 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9789811359569
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 006.3 23
LOC classification:
  • Q334-342
  • TA347.A78
Online resources:
Contents:
1.Introduction -- 2. Preliminaries -- 3. Running Time Analysis: Convergence-based Analysis -- 4. Running Time Analysis: Switch Analysis -- 5. Running Time Analysis: Comparison and Unification -- 6. Approximation Analysis: SEIP -- 7. Boundary Problems of EAs -- 8. Recombination -- 9. Representation -- 10. Inaccurate Fitness Evaluation -- 11. Population -- 12. Constrained Optimization -- 13. Selective Ensemble -- 14. Subset Selection -- 15. Subset Selection: k-Submodular Maximization -- 16. Subset Selection: Ratio Minimization -- 17. Subset Selection: Noise -- 18. Subset Selection: Acceleration. .
In: Springer Nature eBookSummary: Many machine learning tasks involve solving complex optimization problems, such as working on non-differentiable, non-continuous, and non-unique objective functions; in some cases it can prove difficult to even define an explicit objective function. Evolutionary learning applies evolutionary algorithms to address optimization problems in machine learning, and has yielded encouraging outcomes in many applications. However, due to the heuristic nature of evolutionary optimization, most outcomes to date have been empirical and lack theoretical support. This shortcoming has kept evolutionary learning from being well received in the machine learning community, which favors solid theoretical approaches. Recently there have been considerable efforts to address this issue. This book presents a range of those efforts, divided into four parts. Part I briefly introduces readers to evolutionary learning and provides some preliminaries, while Part II presents general theoretical tools for the analysis of running time and approximation performance in evolutionary algorithms. Based on these general tools, Part III presents a number of theoretical findings on major factors in evolutionary optimization, such as recombination, representation, inaccurate fitness evaluation, and population. In closing, Part IV addresses the development of evolutionary learning algorithms with provable theoretical guarantees for several representative tasks, in which evolutionary learning offers excellent performance. .
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

1.Introduction -- 2. Preliminaries -- 3. Running Time Analysis: Convergence-based Analysis -- 4. Running Time Analysis: Switch Analysis -- 5. Running Time Analysis: Comparison and Unification -- 6. Approximation Analysis: SEIP -- 7. Boundary Problems of EAs -- 8. Recombination -- 9. Representation -- 10. Inaccurate Fitness Evaluation -- 11. Population -- 12. Constrained Optimization -- 13. Selective Ensemble -- 14. Subset Selection -- 15. Subset Selection: k-Submodular Maximization -- 16. Subset Selection: Ratio Minimization -- 17. Subset Selection: Noise -- 18. Subset Selection: Acceleration. .

Many machine learning tasks involve solving complex optimization problems, such as working on non-differentiable, non-continuous, and non-unique objective functions; in some cases it can prove difficult to even define an explicit objective function. Evolutionary learning applies evolutionary algorithms to address optimization problems in machine learning, and has yielded encouraging outcomes in many applications. However, due to the heuristic nature of evolutionary optimization, most outcomes to date have been empirical and lack theoretical support. This shortcoming has kept evolutionary learning from being well received in the machine learning community, which favors solid theoretical approaches. Recently there have been considerable efforts to address this issue. This book presents a range of those efforts, divided into four parts. Part I briefly introduces readers to evolutionary learning and provides some preliminaries, while Part II presents general theoretical tools for the analysis of running time and approximation performance in evolutionary algorithms. Based on these general tools, Part III presents a number of theoretical findings on major factors in evolutionary optimization, such as recombination, representation, inaccurate fitness evaluation, and population. In closing, Part IV addresses the development of evolutionary learning algorithms with provable theoretical guarantees for several representative tasks, in which evolutionary learning offers excellent performance. .

There are no comments on this title.

to post a comment.
© 2024 IIIT-Delhi, library@iiitd.ac.in