Amazon cover image
Image from Amazon.com

Finite elements I : approximation and interpolation

By: Contributor(s): Material type: TextTextSeries: Texts in Applied Mathematics ; Volume 75Publication details: Switzerland : Springer, ©2021Description: xii, 325 p. : ill. ; 24 cmISBN:
  • 9783030563400
Subject(s): DDC classification:
  • 515.353 ERN-F
Contents:
Part I: Elements of Functional Analysis. Lebesgue spaces ; Weak derivatives and Sobolev spaces ; Traces and Poincare Inequalities ; Duality in Sobolev spaces Part II: Introduction to Finite Elements. Main ideas and definitions ; One-dimensional finite elements and tensorization ; Simplicial finite elements Part III: Finite element interpolation. Meshes ; Finite element generation ; Mesh orientation ; Local interpolation on affine meshes ; Local inverse and functional inequalities ; Local interpolation on non-affine meshes ; H(div) finite elements ; H(curl) finite elements ; Local interpolation in H(div) and H(curl) (I) ; Local interpolation in H(div) and H(curl) (II) Part IV: Finite element spaces. From broken to conforming spaces ; Main properties of the conforming spaces ; Face gluing ; Construction of the connectivity classes ; Quasi-interpolation and best approximation ; Commuting quasi-interpolation Appendices. Banach and Hillbert spaces ; Differential calculus.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Books Books IIITD General Stacks Mathematics 515.353 ERN-F (Browse shelf(Opens below)) Available 012854
Total holds: 0

Includes bibliographical references and index.

Part I: Elements of Functional Analysis. Lebesgue spaces ; Weak derivatives and Sobolev spaces ; Traces and Poincare Inequalities ; Duality in Sobolev spaces Part II: Introduction to Finite Elements. Main ideas and definitions ; One-dimensional finite elements and tensorization ; Simplicial finite elements Part III: Finite element interpolation. Meshes ; Finite element generation ; Mesh orientation ; Local interpolation on affine meshes ; Local inverse and functional inequalities ; Local interpolation on non-affine meshes ; H(div) finite elements ; H(curl) finite elements ; Local interpolation in H(div) and H(curl) (I) ; Local interpolation in H(div) and H(curl) (II) Part IV: Finite element spaces. From broken to conforming spaces ; Main properties of the conforming spaces ; Face gluing ; Construction of the connectivity classes ; Quasi-interpolation and best approximation ; Commuting quasi-interpolation Appendices. Banach and Hillbert spaces ; Differential calculus.

There are no comments on this title.

to post a comment.
© 2024 IIIT-Delhi, library@iiitd.ac.in