Finite elements I : approximation and interpolation
Material type:
TextSeries: Texts in Applied Mathematics ; Volume 75Publication details: Switzerland  : Springer, ©2021Description: xii, 325 p. : ill. ; 24 cmISBN: - 9783030563400
 
- 515.353 ERN-F
 
| Item type | Current library | Collection | Call number | Status | Date due | Barcode | Item holds | 
|---|---|---|---|---|---|---|---|
                        
                            
                                 
                            
                        
                       Books
                     | 
                
                
                    IIITD General Stacks | Mathematics | 515.353 ERN-F (Browse shelf(Opens below)) | Available | 012854 | 
Includes bibliographical references and index.
Part I: Elements of Functional Analysis. Lebesgue spaces ; Weak derivatives and Sobolev spaces ; Traces and Poincare Inequalities ; Duality in Sobolev spaces Part II: Introduction to Finite Elements. Main ideas and definitions ; One-dimensional finite elements and tensorization ; Simplicial finite elements Part III: Finite element interpolation. Meshes ; Finite element generation ; Mesh orientation ; Local interpolation on affine meshes ; Local inverse and functional inequalities ; Local interpolation on non-affine meshes ; H(div) finite elements ; H(curl) finite elements ; Local interpolation in H(div) and H(curl) (I) ; Local interpolation in H(div) and H(curl) (II) Part IV: Finite element spaces. From broken to conforming spaces ; Main properties of the conforming spaces ; Face gluing ; Construction of the connectivity classes ; Quasi-interpolation and best approximation ; Commuting quasi-interpolation Appendices. Banach and Hillbert spaces ; Differential calculus.

                                    
                            
                        
                       
There are no comments on this title.