Measure theory and probability
Material type: TextPublication details: Boston : Birkhauser, ©1996Description: xiv, 205 p. : ill. ; 24 cmISBN:- 9780817638849
- 515.42 20 ADA-M
- QA273 .A414 1996
Item type | Current library | Collection | Call number | Status | Date due | Barcode | Item holds |
---|---|---|---|---|---|---|---|
Books | IIITD Reference | Mathematics | REF 515.42 ADA-M (Browse shelf(Opens below)) | Available | 012412 |
This book includes bibliographical references and index.
Chapter: 1 Measure Theory 1.1. Introduction. 1.2. Randomness. 1.3. Measure Theory. 1.4. Measure Theoretic Modeling Chapter: 2 Integration 2.1. Measurable Functions. 2.2. The Lebesgue Integral. 2.3. Further Properties of the Integral; Convergence Theorems. 2.4. Lebesgue Integration versus Riemann Integration. 2.5. Fubini Theorem. 2.6. Random Variables, Expectation Values, and Independence. 2.7. The Law of Large Numbers. 2.8. The Discrete Dirichlet Problem Chapter: 3 Fourier Analysis 3.1. L[superscript 1]-Theory. 3.2. L[superscript 2]-Theory. 3.3. The Geometry of Hilbert Space. 3.4. Fourier Series. 3.5. The Fourier Integral. 3.6. Some Applications of Fourier Series to Probability Theory. 3.7. An Application of Probability Theory to Fourier Series. 3.8. The Central Limit Theorem
There are no comments on this title.