Robust Latent Feature Learning for Incomplete Big Data (Record no. 175938)

MARC details
000 -LEADER
fixed length control field 03921nam a22005295i 4500
001 - CONTROL NUMBER
control field 978-981-19-8140-1
003 - CONTROL NUMBER IDENTIFIER
control field DE-He213
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240423125243.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr nn 008mamaa
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 221206s2023 si | s |||| 0|eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9789811981401
-- 978-981-19-8140-1
024 7# - OTHER STANDARD IDENTIFIER
Standard number or code 10.1007/978-981-19-8140-1
Source of number or code doi
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number Q336
072 #7 - SUBJECT CATEGORY CODE
Subject category code UN
Source bicssc
072 #7 - SUBJECT CATEGORY CODE
Subject category code COM021000
Source bisacsh
072 #7 - SUBJECT CATEGORY CODE
Subject category code UN
Source thema
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 005.7
Edition number 23
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Wu, Di.
Relator term author.
Relator code aut
-- http://id.loc.gov/vocabulary/relators/aut
245 10 - TITLE STATEMENT
Title Robust Latent Feature Learning for Incomplete Big Data
Medium [electronic resource] /
Statement of responsibility, etc by Di Wu.
250 ## - EDITION STATEMENT
Edition statement 1st ed. 2023.
264 #1 -
-- Singapore :
-- Springer Nature Singapore :
-- Imprint: Springer,
-- 2023.
300 ## - PHYSICAL DESCRIPTION
Extent XIII, 112 p. 1 illus.
Other physical details online resource.
336 ## -
-- text
-- txt
-- rdacontent
337 ## -
-- computer
-- c
-- rdamedia
338 ## -
-- online resource
-- cr
-- rdacarrier
347 ## -
-- text file
-- PDF
-- rda
490 1# - SERIES STATEMENT
Series statement SpringerBriefs in Computer Science,
International Standard Serial Number 2191-5776
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Chapter 1. Introduction -- Chapter 2. Basis of Latent Feature Learning -- Chapter 3. Robust Latent Feature Learning based on Smooth L1-norm -- Chapter 4. Improving robustness of Latent Feature Learning Using L1-norm -- Chapter 5. Improve robustness of latent feature learning using double-space -- Chapter 6. Data-characteristic-aware latent feature learning -- Chapter 7. Posterior-neighborhood-regularized Latent Feature Learning -- Chapter 8. Generalized deep latent feature learning -- Chapter 9. Conclusion and Outlook. .
520 ## - SUMMARY, ETC.
Summary, etc Incomplete big data are frequently encountered in many industrial applications, such as recommender systems, the Internet of Things, intelligent transportation, cloud computing, and so on. It is of great significance to analyze them for mining rich and valuable knowledge and patterns. Latent feature analysis (LFA) is one of the most popular representation learning methods tailored for incomplete big data due to its high accuracy, computational efficiency, and ease of scalability. The crux of analyzing incomplete big data lies in addressing the uncertainty problem caused by their incomplete characteristics. However, existing LFA methods do not fully consider such uncertainty. In this book, the author introduces several robust latent feature learning methods to address such uncertainty for effectively and efficiently analyzing incomplete big data, including robust latent feature learning based on smooth L1-norm, improving robustness of latent feature learningusing L1-norm, improving robustness of latent feature learning using double-space, data-characteristic-aware latent feature learning, posterior-neighborhood-regularized latent feature learning, and generalized deep latent feature learning. Readers can obtain an overview of the challenges of analyzing incomplete big data and how to employ latent feature learning to build a robust model to analyze incomplete big data. In addition, this book provides several algorithms and real application cases, which can help students, researchers, and professionals easily build their models to analyze incomplete big data.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Artificial intelligence
General subdivision Data processing.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Quantitative research.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Data mining.
650 14 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Data Science.
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Data Analysis and Big Data.
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Data Mining and Knowledge Discovery.
710 2# - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element SpringerLink (Online service)
773 0# - HOST ITEM ENTRY
Title Springer Nature eBook
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Display text Printed edition:
International Standard Book Number 9789811981395
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Display text Printed edition:
International Standard Book Number 9789811981418
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title SpringerBriefs in Computer Science,
-- 2191-5776
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://doi.org/10.1007/978-981-19-8140-1">https://doi.org/10.1007/978-981-19-8140-1</a>
912 ## -
-- ZDB-2-SCS
912 ## -
-- ZDB-2-SXCS
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks-CSE-Springer

No items available.

© 2024 IIIT-Delhi, library@iiitd.ac.in