000 04276nam a22006255i 4500
001 978-3-030-72862-5
003 DE-He213
005 20240423125352.0
007 cr nn 008mamaa
008 210415s2021 sz | s |||| 0|eng d
020 _a9783030728625
_9978-3-030-72862-5
024 7 _a10.1007/978-3-030-72862-5
_2doi
050 4 _aTA1501-1820
050 4 _aTA1634
072 7 _aUYT
_2bicssc
072 7 _aCOM016000
_2bisacsh
072 7 _aUYT
_2thema
082 0 4 _a006
_223
245 1 0 _aCerebral Aneurysm Detection and Analysis
_h[electronic resource] :
_bFirst Challenge, CADA 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, Proceedings /
_cedited by Anja Hennemuth, Leonid Goubergrits, Matthias Ivantsits, Jan-Martin Kuhnigk.
250 _a1st ed. 2021.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2021.
300 _aX, 113 p. 47 illus., 41 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aImage Processing, Computer Vision, Pattern Recognition, and Graphics,
_x3004-9954 ;
_v12643
505 0 _aOverview of the CADA Challenge at MICCAI 2020 -- Cerebral Aneurysm Detection and Analysis Challenge 2020 (CADA) -- Introduction -- CADA: Clinical Background and Motivation -- Cerebral Aneurysm Detection -- Deep Learning-Based 3D U-Net Cerebral Aneurysm Detection -- Detect and Identify Aneurysms Based on Ajusted 3D Attention Unet -- Cerebral Aneurysm Segmentation -- A$\nu$-net: Automatic Detection and Segmentation of Aneurysm -- 3D Attention U-Net with pretraining: A Solution to CADA-Aneurysm Segmentation Challenge -- Exploring Large Context for Cerebral Aneurysm Segmentation -- Cerebral Aneurysm Rupture Risk Estimation -- CADA Challenge: Rupture risk assessment using Computational Fluid Dynamics -- Cerebral Aneurysm Rupture Risk Estimation Using XGBoost and Fully Connected Neural Network -- Intracranial aneurysm rupture risk estimation utilizing vessel-graphs and machine learning -- Intracranial aneurysm rupture prediction with computational fluid dynamics point clouds.
520 _aThis book constitutes the First Cerebral Aneurysm Detection Challenge, CADA 2020, which was held in conjunction with the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, in October 2020. The conference was planned to take place in Lima, Peru, and took place virtually due to the COVID-19 pandemic. The 9 regular papers presented in this volume, together with an overview and one introduction paper, were carefully reviewed and selected for inclusion in the book. The papers were organized in topical sections as follows: cerebral aneurysm detection; cerebral aneurysm segmentation; and cerebral aneurysm rupture risk estimation.
650 0 _aImage processing
_xDigital techniques.
650 0 _aComputer vision.
650 0 _aApplication software.
650 0 _aMachine learning.
650 0 _aComputer science
_xMathematics.
650 1 4 _aComputer Imaging, Vision, Pattern Recognition and Graphics.
650 2 4 _aComputer and Information Systems Applications.
650 2 4 _aMachine Learning.
650 2 4 _aMathematics of Computing.
700 1 _aHennemuth, Anja.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
700 1 _aGoubergrits, Leonid.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
700 1 _aIvantsits, Matthias.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
700 1 _aKuhnigk, Jan-Martin.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
710 2 _aSpringerLink (Online service)
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783030728618
776 0 8 _iPrinted edition:
_z9783030728632
830 0 _aImage Processing, Computer Vision, Pattern Recognition, and Graphics,
_x3004-9954 ;
_v12643
856 4 0 _uhttps://doi.org/10.1007/978-3-030-72862-5
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cSPRINGER
999 _c177193
_d177193