Amazon cover image
Image from Amazon.com

Deep Learning in Solar Astronomy [electronic resource] /

By: Contributor(s): Material type: TextTextSeries: SpringerBriefs in Computer SciencePublisher: Singapore : Springer Nature Singapore : Imprint: Springer, 2022Edition: 1st ed. 2022Description: XIV, 92 p. 1 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9789811927461
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 520 23
  • 500.5 23
LOC classification:
  • QB1-991
Online resources:
Contents:
Chapter 1: Introduction -- Chapter 2: Classical deep learning models -- Chapter 3: Deep learning in solar image classification tasks -- Chapter 4: Deep learning in solar object detection tasks -- Chapter 5: Deep learning in solar image generation tasks -- Chapter 6: Deep learning in solar forecasting tasks.
In: Springer Nature eBookSummary: The volume of data being collected in solar astronomy has exponentially increased over the past decade and we will be entering the age of petabyte solar data. Deep learning has been an invaluable tool exploited to efficiently extract key information from the massive solar observation data, to solve the tasks of data archiving/classification, object detection and recognition. Astronomical study starts with imaging from recorded raw data, followed by image processing, such as image reconstruction, inpainting and generation, to enhance imaging quality. We study deep learning for solar image processing. First, image deconvolution is investigated for synthesis aperture imaging. Second, image inpainting is explored to repair over-saturated solar image due to light intensity beyond threshold of optical lens. Third, image translation among UV/EUV observation of the chromosphere/corona, Ha observation of the chromosphere and magnetogram of the photosphere is realized by using GAN, exhibiting powerful image domain transfer ability among multiple wavebands and different observation devices. It can compensate the lack of observation time or waveband. In addition, time series model, e.g., LSTM, is exploited to forecast solar burst and solar activity indices. This book presents a comprehensive overview of the deep learning applications in solar astronomy. It is suitable for the students and young researchers who are major in astronomy and computer science, especially interdisciplinary research of them.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Chapter 1: Introduction -- Chapter 2: Classical deep learning models -- Chapter 3: Deep learning in solar image classification tasks -- Chapter 4: Deep learning in solar object detection tasks -- Chapter 5: Deep learning in solar image generation tasks -- Chapter 6: Deep learning in solar forecasting tasks.

The volume of data being collected in solar astronomy has exponentially increased over the past decade and we will be entering the age of petabyte solar data. Deep learning has been an invaluable tool exploited to efficiently extract key information from the massive solar observation data, to solve the tasks of data archiving/classification, object detection and recognition. Astronomical study starts with imaging from recorded raw data, followed by image processing, such as image reconstruction, inpainting and generation, to enhance imaging quality. We study deep learning for solar image processing. First, image deconvolution is investigated for synthesis aperture imaging. Second, image inpainting is explored to repair over-saturated solar image due to light intensity beyond threshold of optical lens. Third, image translation among UV/EUV observation of the chromosphere/corona, Ha observation of the chromosphere and magnetogram of the photosphere is realized by using GAN, exhibiting powerful image domain transfer ability among multiple wavebands and different observation devices. It can compensate the lack of observation time or waveband. In addition, time series model, e.g., LSTM, is exploited to forecast solar burst and solar activity indices. This book presents a comprehensive overview of the deep learning applications in solar astronomy. It is suitable for the students and young researchers who are major in astronomy and computer science, especially interdisciplinary research of them.

There are no comments on this title.

to post a comment.
© 2024 IIIT-Delhi, library@iiitd.ac.in