Amazon cover image
Image from Amazon.com

Fitting Splines to a Parametric Function [electronic resource] /

By: Contributor(s): Material type: TextTextSeries: SpringerBriefs in Computer SciencePublisher: Cham : Springer International Publishing : Imprint: Springer, 2019Edition: 1st ed. 2019Description: XII, 79 p. 32 illus., 21 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783030125516
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 006.6 23
LOC classification:
  • T385
Online resources:
Contents:
1 Introduction -- 2 Least Squares Orthogonal Distance -- 3 General Properties of Splines -- 4 ODF using a cubic Bézier -- 5 Topology of Merges/Crossovers -- 6 ODF using a 5-Point B-spline -- 7 ODF using a 6-Point B-spline -- 8 ODF using a quartic Bézier -- 9 ODF using a Beta2-spline -- 10 ODF using a Beta1-spline -- 11 Conclusions.
In: Springer Nature eBookSummary: This Brief investigates the intersections that occur between three different areas of study that normally would not touch each other: ODF, spline theory, and topology. The Least Squares Orthogonal Distance Fitting (ODF) method has become the standard technique used to develop mathematical models of the physical shapes of objects, due to the fact that it produces a fitted result that is invariant with respect to the size and orientation of the object. It is normally used to produce a single optimum fit to a specific object; this work focuses instead on the issue of whether the fit responds continuously as the shape of the object changes. The theory of splines develops user-friendly ways of manipulating six different splines to fit the shape of a simple family of epiTrochoid curves: two types of Bézier curve, two uniform B-splines, and two Beta-splines. This work will focus on issues that arise when mathematically optimizing the fit. There are typically multiple solutions to the ODF method, and the number of solutions can often change as the object changes shape, so two topological questions immediately arise: are there rules that can be applied concerning the relative number of local minima and saddle points, and are there different mechanisms available by which solutions can either merge and disappear, or cross over each other and interchange roles. The author proposes some simple rules which can be used to determine if a given set of solutions is internally consistent in the sense that it has the appropriate number of each type of solution.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

1 Introduction -- 2 Least Squares Orthogonal Distance -- 3 General Properties of Splines -- 4 ODF using a cubic Bézier -- 5 Topology of Merges/Crossovers -- 6 ODF using a 5-Point B-spline -- 7 ODF using a 6-Point B-spline -- 8 ODF using a quartic Bézier -- 9 ODF using a Beta2-spline -- 10 ODF using a Beta1-spline -- 11 Conclusions.

This Brief investigates the intersections that occur between three different areas of study that normally would not touch each other: ODF, spline theory, and topology. The Least Squares Orthogonal Distance Fitting (ODF) method has become the standard technique used to develop mathematical models of the physical shapes of objects, due to the fact that it produces a fitted result that is invariant with respect to the size and orientation of the object. It is normally used to produce a single optimum fit to a specific object; this work focuses instead on the issue of whether the fit responds continuously as the shape of the object changes. The theory of splines develops user-friendly ways of manipulating six different splines to fit the shape of a simple family of epiTrochoid curves: two types of Bézier curve, two uniform B-splines, and two Beta-splines. This work will focus on issues that arise when mathematically optimizing the fit. There are typically multiple solutions to the ODF method, and the number of solutions can often change as the object changes shape, so two topological questions immediately arise: are there rules that can be applied concerning the relative number of local minima and saddle points, and are there different mechanisms available by which solutions can either merge and disappear, or cross over each other and interchange roles. The author proposes some simple rules which can be used to determine if a given set of solutions is internally consistent in the sense that it has the appropriate number of each type of solution.

There are no comments on this title.

to post a comment.
© 2024 IIIT-Delhi, library@iiitd.ac.in