Amazon cover image
Image from Amazon.com

Algebraic Graph Algorithms [electronic resource] : A Practical Guide Using Python /

By: Contributor(s): Material type: TextTextSeries: Undergraduate Topics in Computer SciencePublisher: Cham : Springer International Publishing : Imprint: Springer, 2021Edition: 1st ed. 2021Description: XIII, 221 p. 100 illus., 12 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783030878863
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 004.0151 23
LOC classification:
  • QA75.5-76.95
Online resources:
Contents:
1. Introduction -- 2. Graphs, Matrices and Matroids -- 3. Parallel Matrix Algorithm Kernel -- 4. Basic Graph Algorithms -- 5. Connectivity, Matching and Matroids -- 6. Subgraph Search -- 7. Analysis of Large Graphs -- 8. Clustering in Complex Networks -- 9. Kronecker Graphs -- 10. Sample Algorithms for Complex Networks.
In: Springer Nature eBookSummary: There has been unprecedented growth in the study of graphs, which are discrete structures that have many real-world applications. The design and analysis of algebraic algorithms to solve graph problems have many advantages, such as implementing results from matrix algebra and using the already available matrix code for sequential and parallel processing. Providing Python programming language code for nearly all algorithms, this accessible textbook focuses on practical algebraic graph algorithms using results from matrix algebra rather than algebraic study of graphs. Given the vast theory behind the algebraic nature of graphs, the book strives for an accessible, middle-ground approach by reviewing main algebraic results that are useful in designing practical graph algorithms on the one hand, yet mostly using graph matrices to solve the graph problems. Python is selected for its simplicity, efficiency and rich library routines; and with the code herein, brevity is forsaken for clarity. Topics and features: Represents graphs by algebraic structures, enabling new, robust methods for algorithm analysis and design Provides matroid-based solutions to some graph problems, including greedy algorithm problems Offers Python code that can be tested and modified for various inputs Supplies practical hints, where possible, for parallel processing associated with algebraic algorithms Links to a web page with supportive materials This clearly arranged textbook will be highly suitable for upper-level undergraduate students of computer science, electrical and electronic engineering, bioinformatics, and any researcher or person with background in discrete mathematics, basic graph theory and algorithms. Dr. Kayhan Erciyes is a full Professor in the Department of Software Engineering at Maltepe University, Istanbul, Turkey. His other publications include the Springer titles Discrete Mathematics and Graph Theory, Distributed Real-Time Systems, Guide to Graph Algorithms, Distributed and Sequential Algorithms for Bioinformatics, and Distributed Graph Algorithms for Computer Networks.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

1. Introduction -- 2. Graphs, Matrices and Matroids -- 3. Parallel Matrix Algorithm Kernel -- 4. Basic Graph Algorithms -- 5. Connectivity, Matching and Matroids -- 6. Subgraph Search -- 7. Analysis of Large Graphs -- 8. Clustering in Complex Networks -- 9. Kronecker Graphs -- 10. Sample Algorithms for Complex Networks.

There has been unprecedented growth in the study of graphs, which are discrete structures that have many real-world applications. The design and analysis of algebraic algorithms to solve graph problems have many advantages, such as implementing results from matrix algebra and using the already available matrix code for sequential and parallel processing. Providing Python programming language code for nearly all algorithms, this accessible textbook focuses on practical algebraic graph algorithms using results from matrix algebra rather than algebraic study of graphs. Given the vast theory behind the algebraic nature of graphs, the book strives for an accessible, middle-ground approach by reviewing main algebraic results that are useful in designing practical graph algorithms on the one hand, yet mostly using graph matrices to solve the graph problems. Python is selected for its simplicity, efficiency and rich library routines; and with the code herein, brevity is forsaken for clarity. Topics and features: Represents graphs by algebraic structures, enabling new, robust methods for algorithm analysis and design Provides matroid-based solutions to some graph problems, including greedy algorithm problems Offers Python code that can be tested and modified for various inputs Supplies practical hints, where possible, for parallel processing associated with algebraic algorithms Links to a web page with supportive materials This clearly arranged textbook will be highly suitable for upper-level undergraduate students of computer science, electrical and electronic engineering, bioinformatics, and any researcher or person with background in discrete mathematics, basic graph theory and algorithms. Dr. Kayhan Erciyes is a full Professor in the Department of Software Engineering at Maltepe University, Istanbul, Turkey. His other publications include the Springer titles Discrete Mathematics and Graph Theory, Distributed Real-Time Systems, Guide to Graph Algorithms, Distributed and Sequential Algorithms for Bioinformatics, and Distributed Graph Algorithms for Computer Networks.

There are no comments on this title.

to post a comment.
© 2024 IIIT-Delhi, library@iiitd.ac.in