Amazon cover image
Image from Amazon.com

Visual Saliency: From Pixel-Level to Object-Level Analysis [electronic resource] /

By: Contributor(s): Material type: TextTextPublisher: Cham : Springer International Publishing : Imprint: Springer, 2019Edition: 1st ed. 2019Description: VII, 138 p. 47 illus., 44 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783030048310
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 006.37 23
LOC classification:
  • TA1634
Online resources:
Contents:
1 Overview -- 2 Boolean Map Saliency: A Surprisingly Simple Method -- 3 A Distance Transform Perspective -- 4 Efficient Distance Transform for Salient Region Detection -- 5 Salient Object Subitizing -- 6 Unconstrained Salient Object Detection -- 7 Conclusion and Future Work.
In: Springer Nature eBookSummary: This book provides an introduction to recent advances in theory, algorithms and application of Boolean map distance for image processing. Applications include modeling what humans find salient or prominent in an image, and then using this for guiding smart image cropping, selective image filtering, image segmentation, image matting, etc. In this book, the authors present methods for both traditional and emerging saliency computation tasks, ranging from classical low-level tasks like pixel-level saliency detection to object-level tasks such as subitizing and salient object detection. For low-level tasks, the authors focus on pixel-level image processing approaches based on efficient distance transform. For object-level tasks, the authors propose data-driven methods using deep convolutional neural networks. The book includes both empirical and theoretical studies, together with implementation details of the proposed methods. Below are the key features fordifferent types of readers. For computer vision and image processing practitioners: Efficient algorithms based on image distance transforms for two pixel-level saliency tasks; Promising deep learning techniques for two novel object-level saliency tasks; Deep neural network model pre-training with synthetic data; Thorough deep model analysis including useful visualization techniques and generalization tests; Fully reproducible with code, models and datasets available. For researchers interested in the intersection between digital topological theories and computer vision problems: Summary of theoretic findings and analysis of Boolean map distance; Theoretic algorithmic analysis; Applications in salient object detection and eye fixation prediction. Students majoring in image processing, machine learning and computer vision: This book provides up-to-date supplementary reading material for course topics like connectivity based image processing, deep learning for image processing; Some easy-to-implement algorithms for course projects with data provided (as links in the book); Hands-on programming exercises in digital topology and deep learning.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

1 Overview -- 2 Boolean Map Saliency: A Surprisingly Simple Method -- 3 A Distance Transform Perspective -- 4 Efficient Distance Transform for Salient Region Detection -- 5 Salient Object Subitizing -- 6 Unconstrained Salient Object Detection -- 7 Conclusion and Future Work.

This book provides an introduction to recent advances in theory, algorithms and application of Boolean map distance for image processing. Applications include modeling what humans find salient or prominent in an image, and then using this for guiding smart image cropping, selective image filtering, image segmentation, image matting, etc. In this book, the authors present methods for both traditional and emerging saliency computation tasks, ranging from classical low-level tasks like pixel-level saliency detection to object-level tasks such as subitizing and salient object detection. For low-level tasks, the authors focus on pixel-level image processing approaches based on efficient distance transform. For object-level tasks, the authors propose data-driven methods using deep convolutional neural networks. The book includes both empirical and theoretical studies, together with implementation details of the proposed methods. Below are the key features fordifferent types of readers. For computer vision and image processing practitioners: Efficient algorithms based on image distance transforms for two pixel-level saliency tasks; Promising deep learning techniques for two novel object-level saliency tasks; Deep neural network model pre-training with synthetic data; Thorough deep model analysis including useful visualization techniques and generalization tests; Fully reproducible with code, models and datasets available. For researchers interested in the intersection between digital topological theories and computer vision problems: Summary of theoretic findings and analysis of Boolean map distance; Theoretic algorithmic analysis; Applications in salient object detection and eye fixation prediction. Students majoring in image processing, machine learning and computer vision: This book provides up-to-date supplementary reading material for course topics like connectivity based image processing, deep learning for image processing; Some easy-to-implement algorithms for course projects with data provided (as links in the book); Hands-on programming exercises in digital topology and deep learning.

There are no comments on this title.

to post a comment.
© 2024 IIIT-Delhi, library@iiitd.ac.in