FEEDBACK Smiley face
Normal view MARC view ISBD view

A course in real analysis

By: McDonald, John N.
Contributor(s): Weiss, N. A.
Material type: materialTypeLabelBookPublisher: New Delhi : Academic Press, 2013Edition: 2nd ed.Description: xix, 667 p. : portraits ; 25 cm.ISBN: 9789381269510.Subject(s): Mathematical analysis
Contents:
Machine generated contents note: Set Theory The Real Number System and Calculus Lebesgue Measure on the Real Line The Lebesgue Integral on the Real Line Elements of Measure Theory Extensions to Measures and Product Measure Elements of Probability Differentiation and Absolute Continuity Signed and Complex Measures Topologies, Metrics, and Norms Separability and Compactness Complete and Compact Spaces Hilbert Spaces and Banach Spaces Normed Spaces and Locally Convex Spaces Elements of Harmonic Analysis Measurable Dynamical Systems Hausdorff Measure and Fractals .
Summary: "The second edition of A Course in Real Analysis provides a solid foundation of real analysis concepts and principles, presenting a broad range of topics in a clear and concise manner. The book is excellent at balancing theory and applications with a wealth of examples and exercises. The authors take a progressive approach of skill building to help students learn to absorb the abstract. Real world applications, probability theory, harmonic analysis, and dynamical systems theory are included, offering considerable flexibility in the choice of material to cover in the classroom. The accessible exposition not only helps students master real analysis, but also makes the book useful as a reference"--
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Books Books IIITD
General Stacks
Mathematics 515 MCD-C (Browse shelf) Available 001695
Books Books IIITD
Reference
Mathematics REF 515 MCD-C (Browse shelf) Not For Loan 001696
Total holds: 0

Includes bibliographical references and index.

Machine generated contents note: Set Theory The Real Number System and Calculus Lebesgue Measure on the Real Line The Lebesgue Integral on the Real Line Elements of Measure Theory Extensions to Measures and Product Measure Elements of Probability Differentiation and Absolute Continuity Signed and Complex Measures Topologies, Metrics, and Norms Separability and Compactness Complete and Compact Spaces Hilbert Spaces and Banach Spaces Normed Spaces and Locally Convex Spaces Elements of Harmonic Analysis Measurable Dynamical Systems Hausdorff Measure and Fractals .

"The second edition of A Course in Real Analysis provides a solid foundation of real analysis concepts and principles, presenting a broad range of topics in a clear and concise manner. The book is excellent at balancing theory and applications with a wealth of examples and exercises. The authors take a progressive approach of skill building to help students learn to absorb the abstract. Real world applications, probability theory, harmonic analysis, and dynamical systems theory are included, offering considerable flexibility in the choice of material to cover in the classroom. The accessible exposition not only helps students master real analysis, but also makes the book useful as a reference"--

There are no comments for this item.

Log in to your account to post a comment.

© IIIT-Delhi, 2013 | Phone: +91-11-26907510| FAX +91-11-26907405 | E-mail: library@iiitd.ac.in