FEEDBACK Smiley face
Normal view MARC view ISBD view

Machine Learning: ECML 2006 [electronic resource] :17th European Conference on Machine Learning Berlin, Germany, September 18-22, 2006 Proceedings /

Contributor(s): Fürnkranz, Johannes [editor.] | Scheffer, Tobias [editor.] | Spiliopoulou, Myra [editor.] | SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Lecture Notes in Computer Science: 4212Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.Description: XXIII, 851 p. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783540460565.Subject(s): Computer science | Algorithms | Mathematical logic | Database management | Artificial intelligence | Computer Science | Artificial Intelligence (incl. Robotics) | Algorithm Analysis and Problem Complexity | Mathematical Logic and Formal Languages | Database ManagementOnline resources: Click here to access online
Contents:
Invited Talks -- On Temporal Evolution in Data Streams -- The Future of CiteSeer: CiteSeerx -- Learning to Have Fun -- Winning the DARPA Grand Challenge -- Challenges of Urban Sensing -- Long Papers -- Learning in One-Shot Strategic Form Games -- A Selective Sampling Strategy for Label Ranking -- Combinatorial Markov Random Fields -- Learning Stochastic Tree Edit Distance -- Pertinent Background Knowledge for Learning Protein Grammars -- Improving Bayesian Network Structure Search with Random Variable Aggregation Hierarchies -- Sequence Discrimination Using Phase-Type Distributions -- Languages as Hyperplanes: Grammatical Inference with String Kernels -- Toward Robust Real-World Inference: A New Perspective on Explanation-Based Learning -- Fisher Kernels for Relational Data -- Evaluating Misclassifications in Imbalanced Data -- Improving Control-Knowledge Acquisition for Planning by Active Learning -- PAC-Learning of Markov Models with Hidden State -- A Discriminative Approach for the Retrieval of Images from Text Queries -- TildeCRF: Conditional Random Fields for Logical Sequences -- Unsupervised Multiple-Instance Learning for Functional Profiling of Genomic Data -- Bayesian Learning of Markov Network Structure -- Approximate Policy Iteration for Closed-Loop Learning of Visual Tasks -- Task-Driven Discretization of the Joint Space of Visual Percepts and Continuous Actions -- EM Algorithm for Symmetric Causal Independence Models -- Deconvolutive Clustering of Markov States -- Patching Approximate Solutions in Reinforcement Learning -- Fast Variational Inference for Gaussian Process Models Through KL-Correction -- Bandit Based Monte-Carlo Planning -- Bayesian Learning with Mixtures of Trees -- Transductive Gaussian Process Regression with Automatic Model Selection -- Efficient Convolution Kernels for Dependency and Constituent Syntactic Trees -- Why Is Rule Learning Optimistic and How to Correct It -- Automatically Evolving Rule Induction Algorithms -- Bayesian Active Learning for Sensitivity Analysis -- Mixtures of Kikuchi Approximations -- Boosting in PN Spaces -- Prioritizing Point-Based POMDP Solvers -- Graph Based Semi-supervised Learning with Sharper Edges -- Margin-Based Active Learning for Structured Output Spaces -- Skill Acquisition Via Transfer Learning and Advice Taking -- Constant Rate Approximate Maximum Margin Algorithms -- Batch Classification with Applications in Computer Aided Diagnosis -- Improving the Ranking Performance of Decision Trees -- Multiple-Instance Learning Via Random Walk -- Localized Alternative Cluster Ensembles for Collaborative Structuring -- Distributional Features for Text Categorization -- Subspace Metric Ensembles for Semi-supervised Clustering of High Dimensional Data -- An Adaptive Kernel Method for Semi-supervised Clustering -- To Select or To Weigh: A Comparative Study of Model Selection and Model Weighing for SPODE Ensembles -- Ensembles of Nearest Neighbor Forecasts -- Short Papers -- Learning Process Models with Missing Data -- Case-Based Label Ranking -- Cascade Evaluation of Clustering Algorithms -- Making Good Probability Estimates for Regression -- Fast Spectral Clustering of Data Using Sequential Matrix Compression -- An Information-Theoretic Framework for High-Order Co-clustering of Heterogeneous Objects -- Efficient Inference in Large Conditional Random Fields -- A Kernel-Based Approach to Estimating Phase Shifts Between Irregularly Sampled Time Series: An Application to Gravitational Lenses -- Cost-Sensitive Decision Tree Learning for Forensic Classification -- The Minimum Volume Covering Ellipsoid Estimation in Kernel-Defined Feature Spaces -- Right of Inference: Nearest Rectangle Learning Revisited -- Reinforcement Learning for MDPs with Constraints -- Efficient Non-linear Control Through Neuroevolution -- Efficient Prediction-Based Validation for Document Clustering -- On Testing the Missing at Random Assumption -- B-Matching for Spectral Clustering -- Multi-class Ensemble-Based Active Learning -- Active Learning with Irrelevant Examples -- Classification with Support Hyperplanes -- (Agnostic) PAC Learning Concepts in Higher-Order Logic -- Evaluating Feature Selection for SVMs in High Dimensions -- Revisiting Fisher Kernels for Document Similarities -- Scaling Model-Based Average-Reward Reinforcement Learning for Product Delivery -- Robust Probabilistic Calibration -- Missing Data in Kernel PCA -- Exploiting Extremely Rare Features in Text Categorization -- Efficient Large Scale Linear Programming Support Vector Machines -- An Efficient Approximation to Lookahead in Relational Learners -- Improvement of Systems Management Policies Using Hybrid Reinforcement Learning -- Diversified SVM Ensembles for Large Data Sets -- Dynamic Integration with Random Forests -- Bagging Using Statistical Queries -- Guiding the Search in the NO Region of the Phase Transition Problem with a Partial Subsumption Test -- Spline Embedding for Nonlinear Dimensionality Reduction -- Cost-Sensitive Learning of SVM for Ranking -- Variational Bayesian Dirichlet-Multinomial Allocation for Exponential Family Mixtures.
In: Springer eBooks
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
No physical items for this record

Invited Talks -- On Temporal Evolution in Data Streams -- The Future of CiteSeer: CiteSeerx -- Learning to Have Fun -- Winning the DARPA Grand Challenge -- Challenges of Urban Sensing -- Long Papers -- Learning in One-Shot Strategic Form Games -- A Selective Sampling Strategy for Label Ranking -- Combinatorial Markov Random Fields -- Learning Stochastic Tree Edit Distance -- Pertinent Background Knowledge for Learning Protein Grammars -- Improving Bayesian Network Structure Search with Random Variable Aggregation Hierarchies -- Sequence Discrimination Using Phase-Type Distributions -- Languages as Hyperplanes: Grammatical Inference with String Kernels -- Toward Robust Real-World Inference: A New Perspective on Explanation-Based Learning -- Fisher Kernels for Relational Data -- Evaluating Misclassifications in Imbalanced Data -- Improving Control-Knowledge Acquisition for Planning by Active Learning -- PAC-Learning of Markov Models with Hidden State -- A Discriminative Approach for the Retrieval of Images from Text Queries -- TildeCRF: Conditional Random Fields for Logical Sequences -- Unsupervised Multiple-Instance Learning for Functional Profiling of Genomic Data -- Bayesian Learning of Markov Network Structure -- Approximate Policy Iteration for Closed-Loop Learning of Visual Tasks -- Task-Driven Discretization of the Joint Space of Visual Percepts and Continuous Actions -- EM Algorithm for Symmetric Causal Independence Models -- Deconvolutive Clustering of Markov States -- Patching Approximate Solutions in Reinforcement Learning -- Fast Variational Inference for Gaussian Process Models Through KL-Correction -- Bandit Based Monte-Carlo Planning -- Bayesian Learning with Mixtures of Trees -- Transductive Gaussian Process Regression with Automatic Model Selection -- Efficient Convolution Kernels for Dependency and Constituent Syntactic Trees -- Why Is Rule Learning Optimistic and How to Correct It -- Automatically Evolving Rule Induction Algorithms -- Bayesian Active Learning for Sensitivity Analysis -- Mixtures of Kikuchi Approximations -- Boosting in PN Spaces -- Prioritizing Point-Based POMDP Solvers -- Graph Based Semi-supervised Learning with Sharper Edges -- Margin-Based Active Learning for Structured Output Spaces -- Skill Acquisition Via Transfer Learning and Advice Taking -- Constant Rate Approximate Maximum Margin Algorithms -- Batch Classification with Applications in Computer Aided Diagnosis -- Improving the Ranking Performance of Decision Trees -- Multiple-Instance Learning Via Random Walk -- Localized Alternative Cluster Ensembles for Collaborative Structuring -- Distributional Features for Text Categorization -- Subspace Metric Ensembles for Semi-supervised Clustering of High Dimensional Data -- An Adaptive Kernel Method for Semi-supervised Clustering -- To Select or To Weigh: A Comparative Study of Model Selection and Model Weighing for SPODE Ensembles -- Ensembles of Nearest Neighbor Forecasts -- Short Papers -- Learning Process Models with Missing Data -- Case-Based Label Ranking -- Cascade Evaluation of Clustering Algorithms -- Making Good Probability Estimates for Regression -- Fast Spectral Clustering of Data Using Sequential Matrix Compression -- An Information-Theoretic Framework for High-Order Co-clustering of Heterogeneous Objects -- Efficient Inference in Large Conditional Random Fields -- A Kernel-Based Approach to Estimating Phase Shifts Between Irregularly Sampled Time Series: An Application to Gravitational Lenses -- Cost-Sensitive Decision Tree Learning for Forensic Classification -- The Minimum Volume Covering Ellipsoid Estimation in Kernel-Defined Feature Spaces -- Right of Inference: Nearest Rectangle Learning Revisited -- Reinforcement Learning for MDPs with Constraints -- Efficient Non-linear Control Through Neuroevolution -- Efficient Prediction-Based Validation for Document Clustering -- On Testing the Missing at Random Assumption -- B-Matching for Spectral Clustering -- Multi-class Ensemble-Based Active Learning -- Active Learning with Irrelevant Examples -- Classification with Support Hyperplanes -- (Agnostic) PAC Learning Concepts in Higher-Order Logic -- Evaluating Feature Selection for SVMs in High Dimensions -- Revisiting Fisher Kernels for Document Similarities -- Scaling Model-Based Average-Reward Reinforcement Learning for Product Delivery -- Robust Probabilistic Calibration -- Missing Data in Kernel PCA -- Exploiting Extremely Rare Features in Text Categorization -- Efficient Large Scale Linear Programming Support Vector Machines -- An Efficient Approximation to Lookahead in Relational Learners -- Improvement of Systems Management Policies Using Hybrid Reinforcement Learning -- Diversified SVM Ensembles for Large Data Sets -- Dynamic Integration with Random Forests -- Bagging Using Statistical Queries -- Guiding the Search in the NO Region of the Phase Transition Problem with a Partial Subsumption Test -- Spline Embedding for Nonlinear Dimensionality Reduction -- Cost-Sensitive Learning of SVM for Ranking -- Variational Bayesian Dirichlet-Multinomial Allocation for Exponential Family Mixtures.

There are no comments for this item.

Log in to your account to post a comment.

© IIIT-Delhi, 2013 | Phone: +91-11-26907510| FAX +91-11-26907405 | E-mail: library@iiitd.ac.in