FEEDBACK Smiley face
Normal view MARC view ISBD view

WEBKDD 2002 - Mining Web Data for Discovering Usage Patterns and Profiles [electronic resource] :4th International Workshop, Edmonton, Canada, July 23, 2002. Revised Papers /

Contributor(s): Zaïane, Osmar R [editor.] | Srivastava, Jaideep [editor.] | Spiliopoulou, Myra [editor.] | Masand, Brij [editor.] | SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Lecture Notes in Computer Science: 2703Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2003.Description: IX, 183 p. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783540396635.Subject(s): Popular works | Computer communication systems | Database management | Information storage and retrieval | Artificial intelligence | Computer science | Popular Science | Popular Computer Science | Artificial Intelligence (incl. Robotics) | Computer Communication Networks | Database Management | Information Storage and Retrieval | Information Systems Applications (incl. Internet)Online resources: Click here to access online
Contents:
LumberJack: Intelligent Discovery and Analysis of Web User Traffic Composition -- Mining eBay: Bidding Strategies and Shill Detection -- Automatic Categorization of Web Pages and User Clustering with Mixtures of Hidden Markov Models -- Web Usage Mining by Means of Multidimensional Sequence Alignment Methods -- A Customizable Behavior Model for Temporal Prediction of Web User Sequences -- Coping with Sparsity in a Recommender System -- On the Use of Constrained Associations for Web Log Mining -- Mining WWW Access Sequence by Matrix Clustering -- Comparing Two Recommender Algorithms with the Help of Recommendations by Peers -- The Impact of Site Structure and User Environment on Session Reconstruction in Web Usage Analysis.
In: Springer eBooksSummary: 1 WorkshopTheme Data mining as a discipline aims to relate the analysis of large amounts of user data to shed light on key business questions. Web usage mining in particular, a relatively young discipline, investigates methodologies and techniques that - dress the unique challenges of discovering insights from Web usage data, aiming toevaluateWebusability,understandtheinterestsandexpectationsofusersand assess the e?ectiveness of content delivery. The maturing and expanding Web presents a key driving force in the rapid growth of electronic commerce and a new channel for content providers. Customized o?ers and content, made possible by discovered knowledge about the customer, are fundamental for the establi- ment of viable e-commerce solutions and sustained and e?ective content delivery in noncommercial domains. Rich Web logs provide companies with data about their online visitors and prospective customers, allowing microsegmentation and personalized interactions. While Web mining as a domain is several years old, the challenges that characterize data analysis in this area continue to be formidable. Though p- processing data routinely takes up a major part of the e?ort in data mining, Web usage data presents further challenges based on the di?culties of assigning data streams to unique users and tracking them over time. New innovations are required to reliably reconstruct sessions, to ascertain similarity and di?erences between sessions, and to be able to segment online users into relevant groups.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
No physical items for this record

LumberJack: Intelligent Discovery and Analysis of Web User Traffic Composition -- Mining eBay: Bidding Strategies and Shill Detection -- Automatic Categorization of Web Pages and User Clustering with Mixtures of Hidden Markov Models -- Web Usage Mining by Means of Multidimensional Sequence Alignment Methods -- A Customizable Behavior Model for Temporal Prediction of Web User Sequences -- Coping with Sparsity in a Recommender System -- On the Use of Constrained Associations for Web Log Mining -- Mining WWW Access Sequence by Matrix Clustering -- Comparing Two Recommender Algorithms with the Help of Recommendations by Peers -- The Impact of Site Structure and User Environment on Session Reconstruction in Web Usage Analysis.

1 WorkshopTheme Data mining as a discipline aims to relate the analysis of large amounts of user data to shed light on key business questions. Web usage mining in particular, a relatively young discipline, investigates methodologies and techniques that - dress the unique challenges of discovering insights from Web usage data, aiming toevaluateWebusability,understandtheinterestsandexpectationsofusersand assess the e?ectiveness of content delivery. The maturing and expanding Web presents a key driving force in the rapid growth of electronic commerce and a new channel for content providers. Customized o?ers and content, made possible by discovered knowledge about the customer, are fundamental for the establi- ment of viable e-commerce solutions and sustained and e?ective content delivery in noncommercial domains. Rich Web logs provide companies with data about their online visitors and prospective customers, allowing microsegmentation and personalized interactions. While Web mining as a domain is several years old, the challenges that characterize data analysis in this area continue to be formidable. Though p- processing data routinely takes up a major part of the e?ort in data mining, Web usage data presents further challenges based on the di?culties of assigning data streams to unique users and tracking them over time. New innovations are required to reliably reconstruct sessions, to ascertain similarity and di?erences between sessions, and to be able to segment online users into relevant groups.

There are no comments for this item.

Log in to your account to post a comment.

© IIIT-Delhi, 2013 | Phone: +91-11-26907510| FAX +91-11-26907405 | E-mail: library@iiitd.ac.in