FEEDBACK Smiley face
Normal view MARC view ISBD view

Advanced Lectures on Machine Learning [electronic resource] :Machine Learning Summer School 2002 Canberra, Australia, February 11–22, 2002 Revised Lectures /

Contributor(s): Mendelson, Shahar [editor.] | Smola, Alexander J [editor.] | SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Lecture Notes in Computer Science: 2600Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2003.Description: X, 266 p. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783540364344.Subject(s): Computer science | Science | Computers | Algorithms | Artificial intelligence | Computer Science | Artificial Intelligence (incl. Robotics) | Science, general | Computation by Abstract Devices | Algorithm Analysis and Problem ComplexityOnline resources: Click here to access online
Contents:
A Few Notes on Statistical Learning Theory -- A Short Introduction to Learning with Kernels -- Bayesian Kernel Methods -- An Introduction to Boosting and Leveraging -- An Introduction to Reinforcement Learning Theory: Value Function Methods -- Learning Comprehensible Theories from Structured Data -- Algorithms for Association Rules -- Online Learning of Linear Classifiers.
In: Springer eBooksSummary: Machine Learning has become a key enabling technology for many engineering applications and theoretical problems alike. To further discussions and to dis- minate new results, a Summer School was held on February 11–22, 2002 at the Australian National University. The current book contains a collection of the main talks held during those two weeks in February, presented as tutorial chapters on topics such as Boosting, Data Mining, Kernel Methods, Logic, Reinforcement Learning, and Statistical Learning Theory. The papers provide an in-depth overview of these exciting new areas, contain a large set of references, and thereby provide the interested reader with further information to start or to pursue his own research in these directions. Complementary to the book, a recorded video of the presentations during the Summer School can be obtained at http://mlg. anu. edu. au/summer2002 It is our hope that graduate students, lecturers, and researchers alike will ?nd this book useful in learning and teaching Machine Learning, thereby continuing the mission of the Summer School. Canberra, November 2002 Shahar Mendelson Alexander Smola Research School of Information Sciences and Engineering, The Australian National University Thanks and Acknowledgments We gratefully thank all the individuals and organizations responsible for the success of the workshop.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
No physical items for this record

A Few Notes on Statistical Learning Theory -- A Short Introduction to Learning with Kernels -- Bayesian Kernel Methods -- An Introduction to Boosting and Leveraging -- An Introduction to Reinforcement Learning Theory: Value Function Methods -- Learning Comprehensible Theories from Structured Data -- Algorithms for Association Rules -- Online Learning of Linear Classifiers.

Machine Learning has become a key enabling technology for many engineering applications and theoretical problems alike. To further discussions and to dis- minate new results, a Summer School was held on February 11–22, 2002 at the Australian National University. The current book contains a collection of the main talks held during those two weeks in February, presented as tutorial chapters on topics such as Boosting, Data Mining, Kernel Methods, Logic, Reinforcement Learning, and Statistical Learning Theory. The papers provide an in-depth overview of these exciting new areas, contain a large set of references, and thereby provide the interested reader with further information to start or to pursue his own research in these directions. Complementary to the book, a recorded video of the presentations during the Summer School can be obtained at http://mlg. anu. edu. au/summer2002 It is our hope that graduate students, lecturers, and researchers alike will ?nd this book useful in learning and teaching Machine Learning, thereby continuing the mission of the Summer School. Canberra, November 2002 Shahar Mendelson Alexander Smola Research School of Information Sciences and Engineering, The Australian National University Thanks and Acknowledgments We gratefully thank all the individuals and organizations responsible for the success of the workshop.

There are no comments for this item.

Log in to your account to post a comment.

© IIIT-Delhi, 2013 | Phone: +91-11-26907510| FAX +91-11-26907405 | E-mail: library@iiitd.ac.in