FEEDBACK Smiley face
Normal view MARC view ISBD view

The foundations of mathematics

By: Stewart, Ian.
Contributor(s): Tall, David.
Material type: materialTypeLabelBookPublisher: United Kingdom : Oxford University Press, ©2015Edition: 2nd ed.Description: xvi, 391 p. : ill. ; 25 cm.ISBN: 9780198706434.Subject(s): Logic, Symbolic and mathematical
Contents:
Part I. The intuitive background -- 1. Mathematical thinking -- 2. Number systems -- Part II. The beginnings of formalisation -- 3. Sets -- 4. Relations -- 5. Functions -- 6. Mathematical logic -- 7. Mathematical proof -- Part III. The development of axiomatic systems -- 8. Natural numbers and proof by induction -- 9. Real numbers -- 10. Real numbers as a complete ordered field -- 11. Complex numbers and beyond -- Part IV. Using axiomatic systems -- 12. Axiomatic systems, structure theorems, and flexible thinking -- 13. Permutations and groups -- 14. Cardinal numbers -- 15. Infinitesimals -- Part V. Strengthening the foundations -- 16. Axioms for set theory.
Tags from this library: No tags from this library for this title. Add tag(s)
Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode Item holds
Books Books IIITD
Reference
Mathematics REF 511.3 STE-F (Browse shelf) Not For Loan 007226
Total holds: 0
Browsing IIITD Shelves , Shelving location: Reference , Collection code: Mathematics Close shelf browser
REF 511.3 ROG-T Theory of recursive functions and effective computability REF 511.3 RUC-I Infinity and the mind : REF 511.3 SCH-L Logic for computer scientists REF 511.3 STE-F The foundations of mathematics REF 511.3 VEL-H How to prove it : REF 511.322 KAP-S Set theory and metric spaces REF 511.322 STO-S Set theory and logic

Includes bibliographical references (pages 383-385) and index.

Part I. The intuitive background -- 1. Mathematical thinking -- 2. Number systems -- Part II. The beginnings of formalisation -- 3. Sets -- 4. Relations -- 5. Functions -- 6. Mathematical logic -- 7. Mathematical proof -- Part III. The development of axiomatic systems -- 8. Natural numbers and proof by induction -- 9. Real numbers -- 10. Real numbers as a complete ordered field -- 11. Complex numbers and beyond -- Part IV. Using axiomatic systems -- 12. Axiomatic systems, structure theorems, and flexible thinking -- 13. Permutations and groups -- 14. Cardinal numbers -- 15. Infinitesimals -- Part V. Strengthening the foundations -- 16. Axioms for set theory.

There are no comments for this item.

Log in to your account to post a comment.

© IIIT-Delhi, 2013 | Phone: +91-11-26907510| FAX +91-11-26907405 | E-mail: library@iiitd.ac.in